Предисловие

Программа данного курса химии построена на основе концентрического подхода. Особенность ее состоит в том, чтобы сохранить присущий русской средней школе высокий теоретический уровень и сделать обучение максимально развивающим. Это достигается путем вычленения укрупненной дидактической единицы, в роли которой выступает основополагающее понятие «химический элемент» и формы его существования (свободные атомы, простые и сложные вещества), следования строгой логике принципов развивающего обучения, положенных в основу конструирования программы, и освобождения ее от избытка конкретного материала.

Ведущими идеями предлагаемого курса являются:

- материальное единство веществ природы, их генетическая связь:
- причинно-следственные связи между составом, строением, свойствами и применением веществ;
- познаваемость веществ и закономерностей протекания химических реакций;
- объясняющая и прогнозирующая роль теоретических знаний для фактологического материала химии элементов;
- конкретное химическое соединение представляет собой звено в непрерывной цепи превращений веществ, оно участвует в круговороте химических элементов и в химической эволюции;
- законы природы объективны и познаваемы; знание законов химии дает возможность управлять превращениями веществ, находить экологически безопасные способы производства веществ

и материалов и охраны окружающей среды от химического загрязнения;

- наука и практика взаимосвязаны: требования практики движущая сила развития науки, успехи практики обусловлены достижениями науки;
- развитие химической науки и химизация народного хозяйства служат интересам человека и общества в целом, имеют гуманистический характер и призваны способствовать решению глобальных проблем современности.

Значительное место в содержании курса отводится химическому эксперименту. Он открывает возможность формировать у учащихся специальные предметные умения работать с веществами, выполнять простые химические опыты, учит школьников безопасному и экологически грамотному обращению с веществами в быту и на производстве.

Практические работы сгруппированы в блоки — химические практикумы, которые служат не только средством закрепления умений и навыков, но также и средством контроля за качеством их сформированности.

По своему усмотрению, а также исходя из возможностей школьного кабинета химии учитель может изменить структуру представленного в программе практикума, например увеличить число лабораторных работ в сельских школах за счет сокращения демонстраций — это позволяет сделать небольшая наполняемость классов, особенно в малокомплектных школах.

Программа, предназначенная для каждого из классов основной школы, рассчитана на 68/102 ч: 2 ч (федеральный компонент) и 3 ч (федеральный и школьный компоненты) в неделю в каждом классе.

Программа для каждого из классов старшей школы рассчитана на 34/68 ч (базовый уровень) и 102/136 ч (профильный уровень). Распределение времени по темам ориентировочное. Учитель может обоснованно изменять последовательность изучения вопросов и время на их изучение в пределах выделенного лимита времени.

Программа курса химии для 8—9 классов общеобразовательных учреждений

Пояснительная записка

Весь теоретический материал курса химии для основной школы рассматривается на первом году обучения, что позволяет учащимся более осознанно и глубоко изучить фактический материал — химию элементов и их соединений. Наряду с этим такое построение программы дает возможность развивать полученные первоначально теоретические сведения на богатом фактическом материале химии элементов. В результате выигрывают обе составляющие курса: и теория, и факты.

Программа построена с учетом реализации межпредметных связей с курсом физики 7 класса, где изучаются основные сведения о строении молекул и атомов, и биологии 6—9 классов, где дается знакомство с химической организацией клетки и процессами обмена веществ.

Основное содержание курса химии 8 класса составляют сведения о химическом элементе и формах его существования — атомах, изотопах, ионах, простых веществах и важнейших соединениях элемента (оксидах и других бинарных соединениях, кислотах, основаниях и солях), о строении вещества (типологии химических связей и видах кристаллических решеток), некоторых закономерностях протекания реакций и их классификации.

В содержании курса 9 класса вначале обобщенно раскрыты сведения о свойствах классов веществ — металлов и неметаллов, а затем подробно освещены свойства щелочных и щелочно-

земельных металлов и галогенов. Наряду с этим в курсе раскрываются также и свойства отдельных важных в народнохозяйственном отношении веществ. Заканчивается курс кратким знакомством с органическими соединениями, в основе отбора которых лежит идея генетического развития органических веществ от углеводородов до биополимеров (белков и углеводов).

Предусмотренные в курсе основной школы темы-модули «Химия и сельское хозяйство» (рекомендуется для сельских школ) и «Химия и экология» (рекомендуется для городских школ) могут быть рассмотрены на завершающем этапе изучения химии за счет дополнительного времени, выделяемого из резерва школьного компонента, так как предполагают реализацию в какой-то мере именно регионального и школьного компонентов.

Данная программа реализована в учебниках: Габриелян О. С. Химия. 8 класс. — М.: Дрофа; Габриелян О. С. Химия. 9 класс. — М.: Дрофа.

8 КЛАСС

(2/3 ч в неделю; всего 68/102 ч)

Введение (4/6 ч)

Xимия — наука о веществах, их свойствах и превращениях.

Понятие о химическом элементе и формах его существования: свободных атомах, простых и сложных веществах.

Превращения веществ. Отличие химических реакций от физических явлений. Роль химии в жизни человека. Хемофилия и хемофобия.

Краткие сведения из истории возникновения и развития химии. Период алхимии. Понятие о философском камне. Химия в XVI в. Развитие химии на Руси. Роль отечественных ученых в становле-

нии химической науки — работы М. В. Ломоносова, А. М. Бутлерова, Д. И. Менделеева.

Химическая символика. Знаки химических элементов и происхождение их названий. Химические формулы. Индексы и коэффициенты. Относительные атомная и молекулярная массы. Расчет массовой доли химического элемента по формуле вещества.

Периодическая система химических элементов Д. И. Менделеева, ее структура: малые и большие периоды, группы и подгруппы (главная и побочная). Периодическая система как справочное пособие для получения сведений о химических элементах.

Расчетные задачи. 1. Нахождение относительной молекулярной массы вещества по его химической формуле. 2. Вычисление массовой доли химического элемента в веществе по его формуле.

Тема 1 **Атомы химических элементов** (10/13 ч)

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома.

Состав атомных ядер: протоны и нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса».

Изменение числа протонов в ядре атома — образование новых химических элементов.

Изменение числа нейтронов в ядре атома — образование изотопов. Современное определение понятия «химический элемент». Изотопы как разновидности атомов одного химического элемента.

Электроны. Строение электронных оболочек атомов химических элементов N = 1 - 20 периоди-

ческой системы Д. И. Менделеева. Понятие о завершенном и незавершенном электронном слое (энергетическом уровне).

Периодическая система химических элементов Д. И. Менделеева и строение атомов: физический смысл порядкового номера элемента, номера группы, номера периода.

Изменение числа электронов на внешнем электронном уровне атома химического элемента — образование положительных и отрицательных ионов. Ионы, образованные атомами металлов и неметаллов. Причины изменения металлических и неметаллических свойств в периодах и группах.

Образование бинарных соединений. Понятие об ионной связи. Схемы образования ионной связи.

Взаимодействие атомов химических элементов-неметаллов между собой — образование двухатомных молекул простых веществ. Ковалентная неполярная химическая связь. Электронные и структурные формулы.

Взаимодействие атомов химических элементовнеметаллов между собой — образование бинарных соединений неметаллов. Электроотрицательность. Понятие о ковалентной полярной связи.

Взаимодействие атомов химических элементов-металлов между собой — образование металлических кристаллов. Понятие о металлической связи.

Демонстрации. Модели атомов химических элементов. Периодическая система химических элементов Д. И. Менделеева.

Тема 2 Простые вещества (7/9 ч)

Положение металлов и неметаллов в периодической системе химических элементов Д. И. Менделеева. Важнейшие простые вещества — металлы: железо, алюминий, кальций, магний, натрий, калий. Общие физические свойства металлов.

Важнейшие простые вещества — неметаллы, образованные атомами кислорода, водорода, азота, серы, фосфора, углерода. Способность атомов химических элементов к образованию нескольких простых веществ — аллотропия. Аллотропные модификации кислорода, фосфора и олова. Металлические и неметаллические свойства простых веществ. Относительность деления простых веществ на металлы и неметаллы.

Постоянная Авогадро. Количество вещества. Моль. Молярная масса. Молярный объем газообразных веществ. Кратные единицы количества вещества — миллимоль и киломоль, миллимолярная и киломолярная массы вещества, миллимолярный и киломолярный объемы газообразных веществ.

Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Расчетные задачи. 1. Вычисление молярной массы веществ по химическим формулам. 2. Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Демонстрации. Получение озона. Образцы белого и серого олова, белого и красного фосфора. Некоторые металлы и неметаллы количеством вещества 1 моль. Модель молярного объема газообразных веществ.

Тема 3

Соединения химических элементов (12/16 ч)

Степень окисления. Определение степени окисления элементов по химической формуле соединения. Составление формул бинарных соединений, общий способ их называния. Бинарные соединения: оксиды, хлориды, сульфиды и др. Составление их формул. Представители оксидов: вода, углекислый газ и негашеная известь.

Представители летучих водородных соединений: хлороводород и аммиак.

Основания, их состав и названия. Растворимость оснований в воде. Таблица растворимости гидроксидов и солей в воде. Представители щелочей: гидроксиды натрия, калия и кальция. Понятие о качественных реакциях. Индикаторы. Изменение окраски индикаторов в щелочной среде.

Кислоты, их состав и названия. Классификация кислот. Представители кислот: серная, соляная и азотная. Изменение окраски индикаторов в кислотной среде.

Соли как производные кислот и оснований. Их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат и фосфат кальция.

Аморфные и кристаллические вещества.

Межмолекулярные взаимодействия. Типы кристаллических решеток: ионная, атомная, молекулярная и металлическая. Зависимость свойств веществ от типов кристаллических решеток.

Вещества молекулярного и немолекулярного строения. Закон постоянства состава для веществ молекулярного строения.

Чистые вещества и смеси. Примеры жидких, твердых и газообразных смесей. Свойства чистых веществ и смесей. Их состав. Массовая и объемная доли компонента смеси. Расчеты, связанные с использованием понятия «доля».

Расчетные задачи. 1. Расчет массовой и объемной долей компонентов смеси веществ. 2. Вычисление массовой доли вещества в растворе по известной массе растворенного вещества и массе растворителя. 3. Вычисление массы растворяемого вещества и растворителя, необходимых для приготовления определенной массы раствора с известной массовой долей растворенного вещества.

Демонстрации. Образцы оксидов, кислот, оснований и солей. Модели кристаллических реше-

ток хлорида натрия, алмаза, оксида углерода (IV). Взрыв смеси водорода с воздухом. Способы разделения смесей. Дистилляция воды.

Лабораторные опыты. 1. Знакомство с образцами веществ разных классов. 2. Разделение смесей.

T е м а 4 Изменения, происходящие с веществами $(10/13\ u)$

Понятие явлений как изменений, происходящих с веществами. Явления, связанные с изменением кристаллического строения вещества при постоянном его составе, — физические явления. Физические явления в химии: дистилляция, кристаллизация, выпаривание и возгонка веществ, центрифугирование.

Явления, связанные с изменением состава вещества, — химические реакции. Признаки и условия протекания химических реакций. Понятие об экзо- и эндотермических реакциях. Реакции горения как частный случай экзотермических реакций, протекающих с выделением света.

Закон сохранения массы веществ. Химические уравнения. Значение индексов и коэффициентов. Составление уравнений химических реакций.

Расчеты по химическим уравнениям. Решение задач на нахождение количества вещества, массы или объема продукта реакции по количеству вещества, массе или объему исходного вещества. Расчеты с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Реакции разложения. Понятие о скорости химических реакций. Катализаторы. Ферменты.

Реакции соединения. Каталитические и некаталитические реакции. Обратимые и необратимые реакции. Реакции замещения. Электрохимический ряд напряжений металлов, его использование для прогнозирования возможности протекания реакций между металлами и растворами кислот. Реакции вытеснения одних металлов из растворов их солей другими металлами.

Реакции обмена. Реакции нейтрализации. Условия протекания реакций обмена в растворах до конца.

Типы химических реакций (по признаку «число и состав исходных веществ и продуктов реакции») на примере свойств воды. Реакция разложения — электролиз воды. Реакции соединения — взаимодействие воды с оксидами металлов и неметаллов. Понятие «гидроксиды». Реакции замещения — взаимодействие воды с щелочными и щелочноземельными металлами. Реакции обмена (на примере гидролиза сульфида алюминия и карбида кальция).

Расчетные задачи. 1. Вычисление по химическим уравнениям массы или количества вещества по известной массе или количеству вещества одного из вступающих в реакцию веществ или продуктов реакции. 2. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса исходного вещества, содержащего определенную долю примесей. 3. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса раствора и массовая доля растворенного вещества.

Демонстрации. Примеры физических явлений: а) плавление парафина; б) возгонка иода или бензойной кислоты; в) растворение перманганата калия; г) диффузия душистых веществ с горящей лампочки накаливания. Примеры химических явлений: а) горение магния, фосфора; б) взаимодействие соляной кислоты с мрамором или мелом; в) получение гидроксида меди (II); г) растворение полученного гидроксида в кисло-

тах; д) взаимодействие оксида меди (II) с серной кислотой при нагревании; е) разложение перманганата калия; ж) взаимодействие разбавленных кислот с металлами; з) разложение пероксида водорода; и) электролиз воды.

Лабораторные опыты. 3. Сравнение скорости испарения воды и спирта по исчезновению их капель на фильтровальной бумаге. 4. Окисление меди в пламени спиртовки или горелки. 5. Помутнение известковой воды от выдыхаемого углекислого газа. 6. Получение углекислого газа взаимодействием соды и кислоты. 7. Замещение меди в растворе хлорида меди (II) железом.

Тема 5 Практикум № 1 Простейшие операции с веществом (5/5 ч)

1. Правила техники безопасности при работе в химическом кабинете. Приемы обращения с лабораторным оборудованием и нагревательными приборами. 2. Наблюдения за изменениями, происходящими с горящей свечой, и их описание. 3. Анализ почвы и воды. 4. Признаки химических реакций. 5. Приготовление раствора сахара и определение массовой доли его в растворе.

Тема 6 Растворы. Свойства растворов электролитов (18/26 ч)

Растворение как физико-химический процесс. Понятие о гидратах и кристаллогидратах. Растворимость. Кривые растворимости как модель зависимости растворимости твердых веществ от температуры. Насыщенные, ненасыщенные и пересыщенные растворы. Значение растворов для природы и сельского хозяйства.

Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциации электролитов с различным типом хими-

ческой связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Ионные уравнения реакций. Условия протекания реакции обмена между электролитами до конца в свете ионных представлений.

Классификация ионов и их свойства.

Кислоты, их классификация. Диссоциация кислот и их свойства в свете теории электролитической диссоциации. Молекулярные и ионные уравнения реакций кислот. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с оксидами металлов. Взаимодействие кислот с основаниями — реакция нейтрализации. Взаимодействие кислот с солями. Использование таблицы растворимости для характеристики химических свойств кислот.

Основания, их классификация. Диссоциация оснований и их свойства в свете теории электролитической диссоциации. Взаимодействие оснований с кислотами, кислотными оксидами и солями. Использование таблицы растворимости для характеристики химических свойств оснований. Разложение нерастворимых оснований при нагревании.

Соли, их классификация и диссоциация различных типов солей. Свойства солей в свете теории электролитической диссоциации. Взаимодействие солей с металлами, условия протекания этих реакций. Взаимодействие солей с кислотами, основаниями и солями. Использование таблицы растворимости для характеристики химических свойств солей.

Обобщение сведений об оксидах, их классификации и химических свойствах.

Генетические ряды металлов и неметаллов. Генетическая связь между классами неорганических веществ.

Окислительно-восстановительные реакции. Окислитель и восстановитель, окисление и восстановление.

Реакции ионного обмена и окислительно-восстановительные реакции. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Свойства простых веществ — металлов и неметаллов, кислот и солей в свете представлений об окислительно-восстановительных процессах.

Демонстрации. Испытание веществ и их растворов на электропроводность. Движение окрашенных ионов в электрическом поле. Зависимость электропроводности уксусной кислоты от концентрации. Взаимодействие цинка с серой, соляной кислотой, хлоридом меди (II). Горение магния. Взаимодействие хлорной и сероводородной воды.

Лабораторные опыты. 8. Реакции, характерные для растворов кислот (соляной или серной). 9. Реакции, характерные для растворов щелочей (гидроксидов натрия или калия). 10. Получение и свойства нерастворимого основания, например гидроксида меди (II). 11. Реакции, характерные для растворов солей (например, для хлорида меди (II). 12. Реакции, характерные для основных оксидов (например, для оксида кальция). 13. Реакции, характерные для кислотных оксидов (например, для углекислого газа).

T е м а 7 Π рактикум № 2 Свойства растворов электролитов $(2/4 \ u)^1$

6. Ионные реакции. 7. Условия протекания химических реакций между растворами электролитов до конца. 8. Свойства кислот, оснований, оксидов и солей. 9. Решение экспериментальных задач.

 $^{^1}$ При 2 ч в неделю проводятся только практические работы 8 и 9.

Тема 8

Портретная галерея великих химиков (—/6 ч)

Повторение материала 8 класса — основных понятий, законов и теорий через знакомство с жизнью и деятельностью ученых, осуществивших их открытие.

Тема 9 **Учебные** экскурсии (—/4 ч)

Агрохимлаборатория, аптеки, местное производство.

9 КЛАСС

(2/3 ч в неделю; всего 68/102 ч)

Повторение основных вопросов курса 8 класса и введение в курс 9 класса (6/7 ч)

Характеристика элемента по его положению в периодической системе химических элементов Д. И. Менделеева. Свойства оксидов, кислот, оснований и солей в свете теории электролитической диссоциации и процессов окисления-восстановления. Генетические ряды металла и неметалла.

Понятие о переходных элементах. Амфотерность. Генетический ряд переходного элемента.

Периодический закон и периодическая система химических элементов Д. И. Менделеева в свете учения о строении атома. Их значение.

Лабораторный опыт. 1. Получение гидроксида цинка и исследование его свойств.

Тема 1 **Металлы** (15/23 ч)

Положение металлов в периодической системе химических элементов Д. И. Менделеева. Металлическая кристаллическая решетка и металли-

ческая химическая связь. Общие физические свойства металлов. Сплавы, их свойства и значение. Химические свойства металлов как восстановителей. Электрохимический ряд напряжений металлов и его использование для характеристики химических свойств конкретных металлов. Способы получения металлов: пиро-, гидро- и электрометаллургия. Коррозия металлов и способы борьбы с ней.

Общая характеристика щелочных металлов. Металлы в природе. Общие способы их получения. Строение атомов. Щелочные металлы — простые вещества, их физические и химические свойства. Важнейшие соединения щелочных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, сульфаты, нитраты), их свойства и применение в народном хозяйстве. Калийные удобрения.

Общая характеристика элементов главной подгруппы II группы. Строение атомов. Щелочноземельные металлы — простые вещества, их физические и химические свойства. Важнейшие соединения щелочноземельных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, нитраты, сульфаты и фосфаты), их свойства и применение в народном хозяйстве.

Алюминий. Строение атома, физические и химические свойства простого вещества. Соединения алюминия — оксид и гидроксид, их амфотерный характер. Важнейшие соли алюминия. Применение алюминия и его соединений.

Ж е л е з о. Строение атома, физические и химические свойства простого вещества. Генетические ряды Fe^{2+} и Fe^{3+} . Качественные реакции на Fe^{2+} и Fe^{3+} . Важнейшие соли железа. Значение железа, его соединений и сплавов в природе и народном хозяйстве.

Демонстрации. Образцы щелочных и щелочноземельных металлов. Образцы сплавов. Взаимодействие натрия, лития и кальция с водой.

Взаимодействие натрия и магния с кислородом. Взаимодействие металлов с неметаллами. Получение гидроксидов железа (II) и (III).

Лабораторные опыты. 2. Ознакомление с образцами металлов. 3. Взаимодействие металлов с растворами кислот и солей. 4. Ознакомление с образцами природных соединений: а) натрия; б) кальция; в) алюминия; г) железа. 5. Получение гидроксида алюминия и его взаимодействие с растворами кислот и щелочей. 6. Качественные реакции на ионы Fe^{2+} и Fe^{3+} .

Тема 2 Практикум № 1 Свойства металлов и их соединений (3/3 ч)

1. Осуществление цепочки химических превращений металлов. 2. Получение и свойства соединений металлов. 3. Решение экспериментальных задач на распознавание и получение веществ.

Тема 3 **Неметаллы** (23/28 ч)

Общая характеристика неметаллов: положение в периодической системе Д. И. Менделеева, особенности строения атомов, электроотрицательность как мера «неметалличности», ряд электроотрицательности. Кристаллическое строение неметаллов — простых веществ. Аллотропия. Физические свойства неметаллов. Относительность понятий «металл», «неметалл».

В о д о р о д. Положение в периодической системе химических элементов Д. И. Менделеева. Строение атома и молекулы. Физические и химические свойства водорода, его получение и применение.

Общая характеристика галогенов. Строение атомов. Простые вещества, их физические и химические свойства. Основные соединения галогенов (галогеноводороды и галогениды), их свойства. Качественная реакция на хлорид-ион. Краткие сведения о хлоре, броме, фторе и иоде. Применение галогенов и их соединений в народном хозяйстве.

Сера. Строение атома, аллотропия, свойства и применение ромбической серы. Оксиды серы (IV) и (VI), их получение, свойства и применение. Сероводородная и сернистая кислоты. Серная кислота и ее соли, их применение в народном хозяйстве. Качественная реакция на сульфат-ион.

А з о т. Строение атома и молекулы, свойства простого вещества. Аммиак, строение, свойства, получение и применение. Соли аммония, их свойства и применение. Оксиды азота (II) и (IV). Азотная кислота, ее свойства и применение. Нитраты и нитриты, проблема их содержания в сельскохозяйственной продукции. Азотные удобрения.

Ф о с ф о р. Строение атома, аллотропия, свойства белого и красного фосфора, их применение. Основные соединения: оксид фосфора (V), ортофосфорная кислота и фосфаты. Фосфорные удобрения.

Углерод. Строение атома, аллотропия, свойства аллотропных модификаций, применение. Оксиды углерода (II) и (IV), их свойства и применение. Качественная реакция на углекислый газ. Карбонаты: кальцит, сода, поташ, их значение в природе и жизни человека. Качественная реакция на карбонат-ион.

Кремний. Строение атома, кристаллический кремний, его свойства и применение. Оксид кремния (IV), его природные разновидности. Силикаты. Значение соединений кремния в живой и неживой природе. Понятие о силикатной промышленности.

Демонстрации. Образцы галогенов — простых веществ. Взаимодействие галогенов с натрием,

алюминием. Вытеснение хлором брома или иода из растворов их солей.

Взаимодействие серы с металлами, водородом и кислородом.

Взаимодействие концентрированной азотной кислоты с медью.

Поглощение углем растворенных веществ или газов. Восстановление меди из ее оксида углем. Образцы природных соединений хлора, серы, фосфора, углерода, кремния. Образцы важнейших для народного хозяйства сульфатов, нитратов, карбонатов, фосфатов. Образцы стекла, керамики, цемента.

Лабораторные опыты. 7. Качественная реакция на хлорид-ион. 8. Качественная реакция на сульфат-ион. 9. Распознавание солей аммония. 10. Получение углекислого газа и его распознавание. 11. Качественная реакция на карбонатион. 12. Ознакомление с природными силикатами. 13. Ознакомление с продукцией силикатной промышленности.

Тема 4 Практикум № 2 Свойства неметаллов и их соединений $(3/3 \ u)$

4. Решение экспериментальных задач по теме «Подгруппа кислорода». 5. Решение экспериментальных задач по теме «Подгруппы азота и углерода». 6. Получение, собирание и распознавание газов.

Тема 5 **Органические соединения** (10/14 ч)

Вещества органические и неорганические, относительность понятия «органические вещества». Причины многообразия органических соединений. Химическое строение органических соеди-

нений. Молекулярные и структурные формулы органических веществ.

Метан и этан: строение молекул. Горение метана и этана. Дегидрирование этана. Применение метана.

Химическое строение молекулы этилена. Двойная связь. Взаимодействие этилена с водой. Реакции полимеризации этилена. Полиэтилен и его значение.

Понятие о предельных одноатомных спиртах на примерах метанола и этанола. Трехатомный спирт — глицерин.

Понятие об альдегидах на примере уксусного альдегида. Окисление альдегида в кислоту.

Одноосно́вные предельные карбоновые кислоты на примере уксусной кислоты. Ее свойства и применение. Стеариновая кислота как представитель жирных карбоновых кислот.

Реакции этерификации и понятие о сложных эфирах. Жиры как сложные эфиры глицерина и жирных кислот.

Понятие об аминокислотах. Реакции поликонденсации. Белки, их строение и биологическая роль.

Понятие об углеводах. Глюкоза, ее свойства и значение. Крахмал и целлюлоза (в сравнении), их биологическая роль.

Демонстрации. Модели молекул метана и других углеводородов. Взаимодействие этилена с бромной водой и раствором перманганата калия. Образцы этанола и глицерина. Качественная реакция на многоатомные спирты. Получение уксусно-этилового эфира. Омыление жира. Взаимодействие глюкозы с аммиачным раствором оксида серебра. Качественная реакция на крахмал. Доказательство наличия функциональных групп в растворах аминокислот. Горение белков (шерсти или птичьих перьев). Цветные реакции белков.

Лабораторные опыты. 14. Изготовление моделей молекул углеводородов. 15. Свойства глице-

рина. 16. Взаимодействие глюкозы с гидроксидом меди (II) без нагревания и при нагревании. 17. Взаимодействие крахмала с иодом.

Тема 6 Обобщение знаний по химии за курс основной школы (8/12 ч)

Физический смысл порядкового номера элемента в периодической системе химических элементов Д. И. Менделеева, номеров периода и группы. Закономерности изменения свойств элементов и их соединений в периодах и группах в свете представлений о строении атомов элементов. Значение периодического закона.

Типы химических связей и типы кристаллических решеток. Взаимосвязь строения и свойств веществ.

Классификация химических реакций по различным признакам (число и состав реагирующих и образующихся веществ; тепловой эффект; использование катализатора; направление; изменение степеней окисления атомов).

Простые и сложные вещества. Металлы и неметаллы. Генетические ряды металла, неметалла и переходного металла. Оксиды (основные, амфотерные и кислотные), гидроксиды (основания, амфотерные гидроксиды и кислоты) и соли: состав, классификация и общие химические свойства в свете теории электролитической диссоциации и представлений о процессах окислениявосстановления.

Тема-модуль (элективный курс) Химические вещества в сельском хозяйстве (рекомендуется для сельских школ) $(-/12 \ u)$

Основные направления химизации сельского хозяйства.

Растения и почва. Минеральное питание растений. Понятие о почвенном поглощающем комплексе.

Удобрения и их классификация. Органические удобрения: сапропель, торф, навоз и др. Минеральные удобрения, их классификация. Важнейшие калийные, азотные и фосфорные удобрения. Микроудобрения. Проблемы выращивания экологически чистой сельскохозяйственной продукции.

Химические средства защиты растений. Пестициды, их классификация, важнейшие представители. Техника безопасности при использовании пестицидов в сельском хозяйстве.

Стимуляторы роста и плодоношения растений. Использование веществ в кормовых рационах животных.

Химическая мелиорация почв. Известкование. Гипсование.

Химизация сельского хозяйства и пути решения продовольственной проблемы.

Проблема защиты окружающей среды от веществ, применяемых в сельском хозяйстве.

Демонстрации. Коллекции органических и минеральных удобрений. Образцы микроудобрений. Коллекции различных пестицидов. Коллекции стимуляторов роста и плодоношения растений.

Лабораторные опыты. 1. Влияние минеральных удобрений на рост и развитие растений. 2. Ознакомление с образцами различных удобрений и пестицидов. 3. Сравнение действия различных удобрений на содержание нитратов и нитритов в плодах и овощах.

Тема-модуль (элективный курс) Химия и экология (рекомендуется для городских школ) (—/12 ч)

Основные понятия экологии: среда обитания, экологические факторы, биосфера и ее основные элементы. Человек и биосфера. Уровни экологических проблем: локальный, региональный, глобальный. Взаимосвязь экологии и химии. Связь понятий «химический элемент», «вещество»,

«химическая реакция» с экологическими понятиями.

Природные и антропогенные источники веществ — загрязнителей окружающей среды. Характер воздействия вредных веществ на человека: общетоксическое, раздражающее, аллергическое, с отдаленными последствиями (канцерогенное, мутагенное). Нормирование загрязнений окружающей среды, понятия и критерии нормирования: JI_{50} (летальная доза), JK_{50} (летальная концентрация), ПДВ (предельно допустимые выбросы), ВДК (временно допустимые концентрации).

Основные источники загрязнения атмосферы и современные способы очистки выбросов (абсорбция, адсорбция, конденсация, катализ).
Источники загрязнения гидросферы и современные способы очистки сточных вод (физические, химические, биологические).

Источники загрязнения литосферы, проблема городских и промышленных свалок и пути ее решения.

жальций, железо, калий, натрий и их роль в жизнедеятельности организмов. Антропогенные источники тяжелых металлов — меди, ртути, свинца и др., их воздействие на организм и биохимические циклы.

Органические вещества в жизни растений, животных и человека. Взаимодействие растений и животных и человека. Взаимодеиствие растении и животных посредством органических веществ (красители, пахучие вещества, феромоны). Токсичность и пути воздействия некоторых органических веществ (спирты, фенолы, альдегиды, анилин, полициклические углеводороды) на организм человека. Нефть, уголь и охрана окружающей среды. Решение рассчетных задач, упражнений с экологическим содержанием и контролирующих заданий.

Демонстрации. Образцы сточных вод различных предприятий, гальванических шлаков, твердых остатков в циклонах и электрофильтрах. Коллекции веществ-коагулянтов, катализаторов, обезвреживающих выбросы в атмосферу. Влияние оксида серы (IV) на растения; действие нефти и нефтепродуктов на растения; влияние синтетических моющих средств на водную экосистему.

Лабораторные опыты. 1. Извлечение ионов меди из промывных вод гальванических ванн меднения методом цементации. 2. Очистка воды от аммиака ионообменным способом. 3. Качественные реакции на нитрат-, нитрит- и фосфат-ионы. 4. Обнаружение серы и азота в органических соединениях. 5. Качественные реакции на ионы тяжелых металлов — свинца, цинка, меди и др.

Учебно-методический комплект

- 1. Габриелян О. С., Воскобойникова Н. П., Яшукова А. В. Настольная книга учителя. Химия. 8 кл.: Методическое пособие. М.: Дрофа.
- 2. Габриелян О. С., Остроумов И. Г. Книга для учителя. Химия. 9 кл.: Методическое пособие. М.: Дрофа.
- 3. Химия. 8 кл.: Контрольные и проверочные работы к учебнику О. С. Габриеляна «Химия. 8»/ О. С. Габриелян, П. Н. Березкин, А. А. Ушакова и др. М.: Дрофа.
- 4. Химия. 9 кл.: Контрольные и проверочные работы к учебнику О. С. Габриеляна «Химия. 9» / О. С. Габриелян, П. Н. Березкин, А. А. Ушакова и др. М.: Дрофа.
- 5. Габриелян О. С., Смирнова Т. В. Изучаем химию в 8 кл.: Дидактические материалы. М.: Блик плюс.

- 6. *Габриелян О. С.*, *Остроумов И. Г.* Изучаем химию в 9 кл.: Дидактические материалы. М.: Блик плюс.
- 7. Габриелян О. С., Яшукова А. В. Рабочая тетрадь. 8 кл. К учебнику О. С. Габриеляна «Химия. 8». М.: Дрофа.
- 8. Габриелян О. С., Яшукова А. В. Рабочая тетрадь. 9 кл. К учебнику О. С. Габриеляна «Химия. 9». М.: Дрофа.
- 9. Габриелян О. С., Рунов Н. Н., Толкунов В. И. Химический эксперимент в школе. 8 кл. М.: Дрофа.
- 10. Габриелян О. С., Яшукова А. В. Тетрадь для лабораторных опытов и практических работ. 8 кл. К учебнику О. С. Габриеляна «Химия. 8 класс». М.: Дрофа.
- 11. Габриелян О. С., Яшукова А. В. Тетрадь для лабораторных опытов и практических работ. 9 кл. К учебнику О. С. Габриеляна «Химия. 9 класс». М.: Дрофа.
- 12. Габриелян О. С., Воскобойникова Н. П. Химия в тестах, задачах, упражнениях. 8—9 кл. М.: Дрофа.

Программа курса химии для 10—11 классов общеобразовательных учреждений (базовый уровень)

Пояснительная записка

Программа базового курса химии 10-11 классов отражает современные тенденции в школьном химическом образовании, связанные с реформированием средней школы.

Курс рассчитан на 1—2 ч в неделю. Поэтому перед автором стояла непростая задача: сохранить целостность и системность учебного предмета за столь небольшое, жестко лимитированное учебное время, отпущенное на изучение химии. Следовало также учесть то, что, вероятно, часть выпускников средней школы (пусть даже небольшая) все-таки решит изменить направление дальнейшего образования в вузе и им потребуется знание химии.

Была проделана длительная и скрупулезная работа по отбору содержания учебного предмета базового уровня. Автор смеет надеяться, что программа:

- позволяет сохранить достаточно целостный и системный курс химии, который формировался на протяжении десятков лет в советской и российской школе;
- представляет курс, освобожденный от излишне теоретизированного и сложного материала, для отработки которого требуется немало времени;
- включает материал, связанный с повседневной жизнью человека, также с будущей профессиональной деятельностью выпускника средней

школы, которая не имеет ярко выраженной связи с химией;

• полностью соответствует стандарту химического образования средней школы базового уровня.

Методологической основой построения учебного содержания курса химии базового уровня для средней школы явилась идея интегрированного курса, но не естествознания, а химии. Такого курса, который близок и понятен тысячам российских учителей и доступен и интересен сотням тысяч российских старшеклассников.

Первая идея курса — это внутрипредметная интеграция учебной дисциплины «Химия». Идея такой интеграции диктует следующую очередность изучения разделов химии: вначале, в 10 классе, изучается органическая химия, а затем, в 11 классе, — общая химия. Такое структурирование обусловлено тем, что курс основной школы заканчивается небольшим (10—12 ч) знакомством с органическими соединениями, поэтому необходимо заставить «работать» небольшие сведения по органической химии 9 класса на курс органической химии в 10 классе. Если же изучать органическую химию через год, в 11 классе, это будет невозможно — у старшеклассников не останется по органической химии основной школы даже воспоминаний.

Кроме того, изучение в 11 классе основ общей химии позволяет сформировать у выпускников средней школы представление о химии как о целостной науке, показать единство ее понятий, законов и теорий, универсальность и применимость их как для неорганической, так и для органической химии.

Наконец, подавляющее большинство тестовых заданий ЕГЭ (более 90%) связаны с общей и неорганической химией, а потому в 11, выпускном классе логичнее изучать именно эти разделы хи-

мии, чтобы максимально помочь выпускнику преодолеть это серьезное испытание.

Вторая идея курса — это межпредметная естественнонаучная интеграция, позволяющая на химической базе объединить знания физики, биологии, географии, экологии в единое понимание естественного мира, т. е. сформировать целостную естественнонаучную картину мира. Это позволит старшеклассникам осознать то, что без знания основ химии восприятие окружающего мира будет неполным и ущербным, а люди, не получившие таких знаний, могут неосознанно стать опасными для этого мира, так как химически неграмотное обращение с веществами, материалами и процессами грозит немалыми бедами.

Третья идея курса — это интеграция химических знаний с гуманитарными дисциплинами: историей, литературой, мировой художественной культурой. А это, в свою очередь, позволяет средствами учебного предмета показать роль химии в нехимической сфере человеческой деятельности, т. е. полностью соответствует гуманизации и гуманитаризации обучения. Курс рассчитан на два года обучения по 1 ч в неделю или на один год обучения по 2 ч в неделю. Следует подчеркнуть, что отобранное для базового уровня обучения химии содержание позволяет изучать его и в режиме 2 ч в неделю. В этом случае у учащихся появляется возможность не проходить, а изучать, не знакомиться, а выучивать это содержание. Примерное распределение часов, предусматривающее последний вариант изучения химии в 10-11 классе, указано в знаменателе времени, регламентирующего изучение учебной темы.

Курс четко делится на две части: органическую химию (34/68 ч) и общую химию (34/68 ч).

Теоретическую основу органической химии составляет теория строения в ее классическом

понимании — зависимости свойств веществ от их химического строения, т. е. от расположения атомов в молекулах органических соединений согласно валентности. Электронное и пространственное строение органических соединений при том количестве часов, которое отпущено на изучение органической химии, рассматривать не представляется возможным. В содержании курса органической химии сделан акцент на практическую значимость учебного материала. Поэтому изучение представителей каждого класса органических соединений начинается с практической посылки — с их получения. Химические свойства веществ рассматриваются сугубо прагматически — на предмет их практического применения. В основу конструирования курса положена идея о природных источниках органических соединений и их взаимопревращениях, т. е. идеи генетической связи между классами органических соединений.

Теоретическую основу курса общей химии составляют современные представления о строении вещества (периодическом законе и строении атома, типах химических связей, агрегатном состоянии вещества, полимерах и дисперсных системах, качественном и количественном составе вещества) и химическом процессе (классификации химических реакций, химической кинетике и химическом равновесии, окислительно-восстановительных процессах), адаптированные под курс, рассчитанный на 1-2 ч в неделю. Фактическую основу курса составляют обобщенные представления о классах органических и неорганических соединений и их свойствах. Такое построение курса общей химии позволяет подвести учащихся к пониманию материальности и познаваемости мира веществ, причин его многообразия, всеобщей связи явлений. В свою очередь, это дает возможность учащимся лучше усвоить

собственно химическое содержание и понять роль и место химии в системе наук о природе. Логика и структурирование курса позволяют в полной мере использовать в обучении логические операции мышления: анализ и синтез, сравнение и аналогию, систематизацию и обобщение.

Данная программа реализована в следующих учебниках: *Габриелян О. С.* Химия. 10 кл. Базовый уровень. — М.: Дрофа; *Габриелян О. С.* Химия. 11 кл. Базовый уровень. — М.: Дрофа.

10 КЛАСС (ОРГАНИЧЕСКАЯ ХИМИЯ)

(1 ч в неделю на протяжении учебного года или 2 ч в первом полугодии, всего 34 ч или 2 ч в неделю, всего 68 ч, из них 2 ч — резервное время)

Введение (1/1 ч)

Предмет органической химии. Сравнение органических соединений с неорганическими. Природные, искусственные и синтетические органические соединения.

T е м а 1 T е органических соединений $(2/6 \ u)$

Валентность. Химическое строение как порядок соединения атомов в молекуле согласно их валентности. Основные положения теории химического строения органических соединений. Понятие о гомологии и гомологах, изомерии и изомерах. Химические формулы и модели молекул в органической химии.

Демонстрации. Модели молекул гомологов и изомеров органических соединений.

Тема 2

Углеводороды и их природные источники $(8/16 \ u)$

Природный газ. Алканы. Природный газ как топливо. Преимущества природного газа перед другими видами топлива. Состав природного газа.

Алканы: гомологический ряд, изомерия и номенклатура алканов. Химические свойства алканов (на примере метана и этана): горение, замещение, разложение и дегидрирование. Применение алканов на основе свойств.

Алкены. Этилен, его получение (дегидрированием этана и дегидратацией этанола). Химические свойства этилена: горение, качественные реакции (обесцвечивание бромной воды и раствора перманганата калия), гидратация, полимеризация. Полиэтилен, его свойства и применение. Применение этилена на основе свойств.

Алкадиены и каучуки. Понятие об алкадиенах как углеводородах с двумя двойными связями. Химические свойства бутадиена-1,3 и изопрена: обесцвечивание бромной воды и полимеризация в каучуки. Резина.

Алкины. Ацетилен, его получение пиролизом метана и карбидным способом. Химические свойства ацетилена: горение, обесцвечивание бромной воды, присоединение хлороводорода и гидратация. Применение ацетилена на основе свойств. Реакция полимеризации винилхлорида. Поливинилхлорид и его применение.

Бензол. Получение бензола из гексана и ацетилена. Химические свойства бензола: горение, галогенирование, нитрование. Применение бензола на основе свойств.

Нефть. Состав и переработка нефти. Нефтепродукты. Бензин и понятие об октановом числе.

Демонстрации. Горение метана, этилена, ацетилена. Отношение метана, этилена, ацетилена

и бензола к раствору перманганата калия и бромной воде. Получение этилена реакцией дегидратации этанола и деполимеризации полиэтилена, ацетилена карбидным способом. Разложение каучука при нагревании, испытание продуктов разложения на непредельность. Коллекция образцов нефти и нефтепродуктов.

Лабораторные опыты. 1. Определение элементного состава органических соединений. 2. Изготовление моделей молекул углеводородов. 3. Обнаружение непредельных соединений в жидких нефтепродуктах. 4. Получение и свойства ацетилена. 5. Ознакомление с коллекцией «Нефть и продукты ее переработки».

T е м а 3 Кислородсодержащие органические соединения и их природные источники $(10/19\ u)$

Единство химической организации живых организмов. Химический состав живых организмов.

Спирты. Получение этанола брожением глюкозы и гидратацией этилена. Гидроксильная группа как функциональная. Представление о водородной связи. Химические свойства этанола: горение, взаимодействие с натрием, образование простых и сложных эфиров, окисление в альдегид. Применение этанола на основе свойств. Алкоголизм, его последствия и предупреждение.

Понятие о предельных многоатомных спиртах. Глицерин как представитель многоатомных спиртов. Качественная реакция на многоатомные спирты. Применение глицерина.

Каменный уголь. Фенол. Коксохимическое производство и его продукция. Получение фенола коксованием каменного угля. Взаимное влияние атомов в молекуле фенола: взаимодействие с гидроксидом натрия и азотной

кислотой. Поликонденсация фенола с формальдегидом в фенолоформальдегидную смолу. Применение фенола на основе свойств.

Альдегиды. Получение альдегидов окислением соответствующих спиртов. Химические свойства альдегидов: окисление в соответствующую кислоту и восстановление в соответствующий спирт. Применение формальдегида и ацетальдегида на основе свойств.

Карбоновые кислоты. Получение карбоновых кислот окислением альдегидов. Химические свойства уксусной кислоты: общие свойства с неорганическими кислотами и реакция этерификации. Применение уксусной кислоты на основе свойств. Высшие жирные кислоты на примере пальмитиновой и стеариновой.

Сложные эфиры и жиры. Получение сложных эфиров реакцией этерификации. Сложные эфиры в природе, их значение. Применение сложных эфиров на основе свойств.

Жиры как сложные эфиры. Химические свойства жиров: гидролиз (омыление) и гидрирование жидких жиров. Применение жиров на основе свойств.

У г л е в о д ы. Углеводы, их классификация: моносахариды (глюкоза), дисахариды (сахароза) и полисахариды (крахмал и целлюлоза). Значение углеводов в живой природе и в жизни человека.

Глюкоза — вещество с двойственной функцией — альдегидоспирт. Химические свойства глюкозы: окисление в глюконовую кислоту, восстановление в сорбит, брожение (молочнокислое и спиртовое). Применение глюкозы на основе свойств.

Дисахариды и полисахариды. Понятие о реакциях поликонденсации и гидролиза на примере взаимопревращений: глюкоза

□ полисахарид.

Демонстрации. Окисление спирта в альдегид. Качественная реакция на многоатомные спирты. Коллекция «Каменный уголь и продукты его

переработки». Растворимость фенола в воде при обычной температуре и при нагревании. Качественные реакции на фенол. Реакция «серебряного зеркала» альдегидов и глюкозы. Окисление альдегидов и глюкозы в кислоты с помощью гидроксида меди (II). Получение уксусно-этилового и уксусно-изоамилового эфиров. Коллекция эфирных масел. Качественная реакция на крахмал.

Лабораторные опыты. 6. Свойства этилового спирта. 7. Свойства глицерина. 8. Свойства формальдегида. 9. Свойства уксусной кислоты. 10. Свойства жиров. 11. Сравнение свойств растворов мыла и стирального порошка. 12. Свойства глюкозы. 13. Свойства крахмала.

Тема 4 Азотсодержащие соединения и их нахождение в живой природе (6/9 ч)

Амины. Понятие об аминах. Получение ароматического амина — анилина — из нитробензола. Анилин как органическое основание. Взаимное влияние атомов в молекуле анилина: ослабление основных свойств и взаимодействие с бромной водой. Применение анилина на основе свойств.

Аминокислот из карбоновых кислот и гидролизом белков. Химические свойства аминокислот как амфотерных органических соединений: взаимодействие со щелочами, кислотами и друг с другом (реакция поликонденсации). Пептидная связь и полипептиды. Применение аминокислот на основе свойств.

Белки. Получение белков реакцией поликонденсации аминокислот. Первичная, вторичная и третичная структуры белков. Химические свойства белков: горение, денатурация, гидролиз и цветные реакции. Биохимические функции белков.

Генетическая связь между классами органических соединений.

Нуклеиновые кислоты. Синтез нуклеиновых кислот в клетке из нуклеотидов. Общий план строения нуклеотида. Сравнение строения и функций РНК и ДНК. Роль нуклеиновых кислот в хранении и передаче наследственной информации. Понятие о биотехнологии и генной инженерии.

Демонстрации. Взаимодействие аммиака и анилина с соляной кислотой. Реакция анилина с бромной водой. Доказательство наличия функциональных групп в растворах аминокислот. Растворение и осаждение белков. Цветные реакции белков: ксантопротеиновая и биуретовая. Горение птичьего пера и шерстяной нити. Модель молекулы ДНК. Переходы: этанол — этилен — этиленгликоль — этиленгликолят меди (II); этанол — этаналь — этановая кислота.

Лабораторные опыты. 14. Свойства белков.

Практическая работа № 1. Идентификация органических соединений.

Тема 5 Биологически активные органические соединения (4/8 ч)

Ферменты как биологические катализаторы белковой природы. Особенности функционирования ферментов. Роль ферментов в жизнедеятельности живых организмов и народном хозяйстве.

Витамины. Понятие о витаминах. Нарушения, связанные с витаминами: авитаминозы, гиповитаминозы и гипервитаминозы. Витамин С как представитель водорастворимых витаминов и витамин А как представитель жирорастворимых витаминов.

Гормоны. Понятие о гормонах как гуморальных регуляторах жизнедеятельности живых организмов. Инсулин и адреналин как представители гормонов. Профилактика сахарного диабета.

Лекарственная химия: от иатрохимии до химиотерапии. Аспирин. Антибиотики и дисбактериоз. Наркотические вещества. Наркомания, борьба с ней и профилактика.

Демонстрации. Разложение пероксида водорода каталазой сырого мяса и сырого картофеля. Коллекция СМС, содержащих энзимы. Испытание среды раствора СМС индикаторной бумагой. Иллюстрации с фотографиями животных с различными формами авитаминозов. Коллекция витаминных препаратов. Испытание среды раствора аскорбиновой кислоты индикаторной бумагой. Испытание аптечного препарата инсулина на белок. Домашняя, лабораторная и автомобильная аптечка.

T е м а 6 Искусственные и синтетические полимеры $(3/7 \ u)$

Искусственных полимеров, как продуктов химической модификации природного полимерного сырья. Искусственные волокна (ацетатный шелк, вискоза), их свойства и применение.

Синтетических полимеров реакциями полимеров: полимеров: линейная, разветвленная и пространственная. Представители синтетических пластмасс: полиэтилен низкого и высокого давления, полипропилен и поливинилхлорид. Синтетические волокна: лавсан, нитрон и капрон.

Демонстрации. Коллекция пластмасс и изделий из них. Коллекции искусственных и синтетических волокон и изделий из них. Распознавание волокон по отношению к нагреванию и химическим реактивам.

Лабораторные опыты. 15. Ознакомление с образцами пластмасс, волокон и каучуков.

Практическая работа № 2. Распознавание пластмасс и волокон.

11 КЛАСС ИЛИ 10 КЛАСС, ВТОРОЕ ПОЛУГОДИЕ (ОБЩАЯ ХИМИЯ)

(1 ч в неделю на протяжении учебного года в 11 классе или 2 ч в неделю в 10 классе во втором полугодии, всего 34 ч или 2 ч в неделю, всего 68 ч, из них 2 ч — резервное время)

T е м а 1 Строение атома и периодический закон Π . И. Менделеева $(3/6\ u)$

Основные сведения о строении атома. Ядро: протоны и нейтроны. Изотопы. Электроны. Электронная оболочка. Энергетический уровень. Особенности строения электронных оболочек атомов элементов 4-го и 5-го периодов периодической системы Д. И. Менделеева (переходных элементов). Понятие об орбиталях. s- и p-орбитали. Электронные конфигурации атомов химических элементов.

Периодический закон Д.И. Менделеева в свете учения о строении атома. Открытие Д.И. Менделеевым периодического закона.

Периодическая система химических элементов Д. И. Менделеева — графическое отображение периодического закона. Физический смысл порядкового номера элемента, номера периода и номера группы. Валентные электроны. Причины изменения свойств элементов в периодах и группах (главных подгруппах).

Положение водорода в периодической системе. Значение периодического закона и периодической системы химических элементов Д. И. Менделеева для развития науки и понимания химической картины мира.

Демонстрации. Различные формы периодической системы химических элементов Д. И. Менделеева.

Лабораторный опыт. 1. Конструирование периодической таблицы элементов с использованием карточек.

Тема 2 Строение вещества (14/26 ч)

Ионная химическая связь. Катионы и анионы. Классификация ионов. Ионные кристаллические решетки. Свойства веществ с этим типом кристаллических решеток.

Ковалентная химическая связь. Электроотрицательность. Полярная и неполярная ковалентные связи. Диполь. Полярность связи и полярность молекулы. Обменный и донорноакцепторный механизмы образования ковалентной связи. Молекулярные и атомные кристаллические решетки. Свойства веществ с этими типами кристаллических решеток.

Металлическая химическая связь. Особенности строения атомов металлов. Металлическая химическая связь и металлическая кристаллическая решетка. Свойства веществ с этим типом связи.

Водородная химическая связь. Межмолекулярная и внутримолекулярная водородная связь. Значение водородной связи для организации структур биополимеров.

Полимеры. Пластмассы: термопласты и реактопласты, их представители и применение. Волокна: природные (растительные и животные) и химические (искусственные и синтетические), их представители и применение.

Газообразное состояние вещества. Три агрегатных состояния воды. Особенности строения газов. Молярный объем газообразных веществ.

Примеры газообразных природных смесей: воздух, природный газ. Загрязнение атмосферы (кислотные дожди, парниковый эффект) и борьба с ним.

Представители газообразных веществ: водород, кислород, углекислый газ, аммиак, этилен. Их получение, собирание и распознавание.

Жидкое состояние вещества. Вода. Потребление воды в быту и на производстве. Жесткость воды и способы ее устранения.

Минеральные воды, их использование в столовых и лечебных целях.

Жидкие кристаллы и их применение.

Твердое состояние вещества. Аморфные твердые вещества в природе и в жизни человека, их значение и применение. Кристаллическое строение вещества.

Дисперсных системах. Дисперсная фаза и дисперсионная среда. Классификация дисперсных систем в зависимости от агрегатного состояния дисперсной среды и дисперсионной фазы.

Грубодисперсные системы: эмульсии, суспензии, аэрозоли.

Тонкодисперсные системы: гели и золи.

Состав вещества и смесей. Вещества молекулярного и немолекулярного строения. Закон постоянства состава веществ.

Понятие «доля» и ее разновидности: массовая (доля элементов в соединении, доля компонента в смеси — доля примесей, доля растворенного вещества в растворе) и объемная. Доля выхода продукта реакции от теоретически возможного.

Демонстрации. Модель кристаллической решетки хлорида натрия. Образцы минералов с ионной кристаллической решеткой: кальцита, галита. Модели кристаллических решеток «сухого льда» (или иода), алмаза, графита (или кварца). Модель молекулы ДНК. Образцы пластмасс (фенолоформальдегидные, полиуретан, полиэтилен, полипропилен, поливинилхлорид) и изделия из них. Образцы волокон (шерсть, шелк, ацетатное волокно, капрон, лавсан, нейлон) и изделия из них. Образцы неорганических полиме-

ров (сера пластическая, кварц, оксид алюминия, природные алюмосиликаты). Модель молярного объема газов. Три агрегатных состояния воды. Образцы накипи в чайнике и трубах центрального отопления. Жесткость воды и способы ее устранения. Приборы на жидких кристаллах. Образцы различных дисперсных систем: эмульсий, суспензий, аэрозолей, гелей и золей. Коагуляция. Синерезис. Эффект Тиндаля.

Лабораторные опыты. 2. Определение типа кристаллической решетки вещества и описание его свойств. 3. Ознакомление с коллекцией полимеров: пластмасс и волокон и изделия из них. 4. Испытание воды на жесткость. Устранение жесткости воды. 5. Ознакомление с минеральными водами. 6. Ознакомление с дисперсными системами.

Практическая работа № 1. Получение, собирание и распознавание газов.

T е м а 3 **Химические реакции** (8/16 ч)

Реакции, идущие без изменения состава веществ. Аллотропия и аллотропные видоизменения. Причины аллотропии на примере модификаций кислорода, углерода и фосфора. Озон, его биологическая роль.

Изомеры и изомерия.

Реакции, идущие с изменением состава веществ. Реакции соединения, разложения, замещения и обмена в неорганической и органической химии. Реакции экзо- и эндотермические. Тепловой эффект химической реакции и термохимические уравнения. Реакции горения, как частный случай экзотермических реакций.

Скорость химической реакции. Зависимость скорости химической реакции от природы реагирующих веществ, концентрации, температуры,

площади поверхности соприкосновения и катализатора. Реакции гомо- и гетерогенные. Понятие о катализе и катализаторах. Ферменты как биологические катализаторы, особенности их функционирования.

Обратимость химических реакций. Необратимые и обратимые химические реакции. Состояние химического равновесия для обратимых химических реакций. Способы смещения химического равновесия на примере синтеза аммиака. Понятие об основных научных принципах производства на примере синтеза аммиака или серной кислоты.

Роль воды в химической реакции. Истинные растворы. Растворимость и классификация веществ по этому признаку: растворимые, малорастворимые и нерастворимые вещества.

Электролиты и неэлектролиты. Электролитическая диссоциация. Кислоты, основания и соли с точки зрения теории электролитической диссоциации.

Химические свойства воды: взаимодействие с металлами, основными и кислотными оксидами, разложение и образование кристаллогидратов. Реакции гидратации в органической химии.

Гидролиз органических и неорганических соединений. Необратимый гидролиз. Обратимый гидролиз солей.

Гидролиз органических соединений и его практическое значение для получения гидролизного спирта и мыла. Биологическая роль гидролиза в пластическом и энергетическом обмене веществ и энергии в клетке.

Окислитель и осстановитель. Определение степени окисления по формуле соединения. Понятие об окислительно-восстановительных реакциях. Окисление и восстановление, окислитель и восстановитель.

Электролиз как окислительно-восстановительный процесс. Электролиз расплавов и растворов на примере хлорида натрия. Практическое применение электролиза. Электролитическое получение алюминия.

Демонстрации. Превращение красного фосфора в белый. Озонатор. Модели молекул н-бутана и изобутана. Зависимость скорости реакции от природы веществ на примере взаимодействия растворов различных кислот одинаковой концентрации с одинаковыми гранулами цинка и взаимодействия одинаковых кусочков разных металлов (магния, цинка, железа) с соляной кислотой. Взаимодействие растворов серной кислоты с растворами тиосульфата натрия различной концентрации и температуры. Модель кипящего слоя. Разложение пероксида водорода мощью катализатора (оксида марганца (IV)) и каталазы сырого мяса и сырого картофеля. Примеры необратимых реакций, идущих с образованием осадка, газа или воды. Взаимодействие лития и натрия с водой. Получение оксида фосфора (V) и растворение его в воде; испытание полученного раствора лакмусом. Образцы кристаллогидратов. Испытание растворов электролитов и неэлектролитов на предмет диссоциации. Зависимость степени электролитической диссоциации уксусной кислоты от разбавления раствора. Гидролиз карбида кальция. Гидролиз карбонатов щелочных металлов и нитратов цинка или свинца (II). Получение мыла. Простейшие окислительно-восстановительные реакции: взаимодействие цинка с соляной кислотой и железа с раствором сульфата меди (II). Модель электролизера. Модель электролизной ванны для получения алюминия.

Лабораторные опыты. 7. Реакция замещения меди железом в растворе медного купороса. 8. Реакции, идущие с образованием осадка, газа и воды. 9. Получение кислорода разложением пероксида водорода с помощью оксида марганца (IV) и

каталазы сырого картофеля. 10. Получение водорода взаимодействием кислоты с цинком. 11. Различные случаи гидролиза солей.

Тема 4 Вещества и их свойства (9/18 ч)

Металлы. Взаимодействие металлов с неметаллами (хлором, серой и кислородом). Взаимодействие щелочных и щелочноземельных металлов с водой. Электрохимический ряд напряжений металлов. Взаимодействие металлов с растворами кислот и солей. Алюминотермия. Взаимодействие натрия с этанолом и фенолом.

Коррозия металлов. Понятие о химической и электрохимической коррозии металлов. Способы защиты металлов от коррозии.

Неметаллы. Сравнительная характеристика галогенов как наиболее типичных представителей неметаллов. Окислительные свойства неметаллов (взаимодействие с металлами и водородом). Восстановительные свойства неметаллов (взаимодействие с более электроотрицательными неметаллами и сложными веществами-окислителями).

Кислоты неорганические и органические ские. Классификация кислот. Химические свойства кислот: взаимодействие с металлами, оксидами металлов, гидроксидами металлов, солями, спиртами (реакция этерификации). Особые свойства азотной и концентрированной серной кислоты.

Основания неорганические и органические и органические. Основания, их классификация. Химические свойства оснований: взаимодействие с кислотами, кислотными оксидами и солями. Разложение нерастворимых оснований.

Соли. Классификация солей: средние, кислые и основные. Химические свойства солей: взаимодействие с кислотами, щелочами, металлами и солями. Представители солей и их значение. Хлорид натрия, карбонат кальция, фосфат кальция (средние соли); гидрокарбонаты натрия и аммо-

ния (кислые соли); гидроксокарбонат меди (II) — малахит (основная соль).

Качественные реакции на хлорид-, сульфат-, и карбонат-анионы, катион аммония, катионы железа (II) и (III).

Генетическая связь между классами неорганических и органических их соединений. Понятие о генетической связи и генетических рядах. Генетический ряд металла. Генетический ряд неметалла. Особенности генетического ряда в органической химии.

Лемонстрации. Коллекция образцов металлов. Взаимодействие натрия и сурьмы с хлором, железа с серой. Горение магния и алюминия в кислороде. Взаимодействие щелочноземельных металлов с водой. Взаимодействие натрия с этанолом, цинка с уксусной кислотой. Алюминотермия. Взаимодействие меди с концентрированной азотной кислотой. Результаты коррозии металлов в зависимости от условий ее протекания. Коллекция образцов неметаллов. Взаимодействие хлорной воды с раствором бромида (иодида) калия. Коллекция природных органических кислот. Разбавление концентрированной серной кислоты. Взаимодействие концентрированной серной кислоты с сахаром, целлюлозой и медью. Образцы природных минералов, содержащих хлорид натрия, карбонат кальция, фосфат кальция и гидроксокарбонат меди (II). Образцы пищевых продуктов, содержащих гидрокарбонаты натрия и аммония, их способность к разложению при нагревании. Гашение соды уксусом. Качественные реакции на катионы и анионы.

Лабораторные опыты. 12. Испытание растворов кислот, оснований и солей индикаторами. 13. Взаимодействие соляной кислоты и раствора уксусной кислоты с металлами. 14. Взаимодействие соляной кислоты и раствора уксусной кислоты с основаниями. 15. Взаимодействие соляной кислоты и раствора уксусной кислоты и раствора уксусной кислоты с солями. 16. Получение и свойства нерастворимых основа-

ний. 17. Гидролиз хлоридов и ацетатов щелочных металлов. 18. Ознакомление с коллекциями: а) металлов; б) неметаллов; в) кислот; г) оснований; д) минералов и биологических материалов, содержащих некоторые соли.

Практическая работа № 2. Решение экспериментальных задач на идентификацию органиче-

ских и неорганических соединений.

Учебно-методический комплект

1. Габриелян О. С., Яшукова А. В. Химия. 10 кл. Базовый уровень: Методическое пособие. — М.: Дрофа.

2. Габриелян О. С., Яшукова А. В. Рабочая тетрадь. 10 кл. К учебнику О. С. Габриеляна «Химия. 10 класс. Базовый уровень». — М.: Дро-

фа.

3. Габриелян О. С., Остроумов И. Г., Сладков С. А. Книга для учителя. Химия. 10 кл. Базовый уровень: Методическое пособие. — М.: Дрофа.

4. Габриелян О. С., Яшукова А. В. Химия. 11 кл. Базовый уровень: Методическое пособие. —

М.: Дрофа.

5. Габриелян О. С., Яшукова А. В. Рабочая тетрадь. 11 кл. К учебнику О. С. Габриеляна «Химия. 11 класс. Базовый уровень». — М.: Дрофа.

6. Габриелян О. С., Остроумов И. Г., Сладков С. А. Книга для учителя. Химия. 11 кл. Базовый уровень: Методическое посо-

бие. — М.: Дрофа.

- 7. Химия. 10 кл. Контрольные и проверочные работы к учебнику О. С. Габриеляна «Химия. 10 класс. Базовый уровень» / О. С. Габриелян, П. Н. Березкин, А. А. Ушакова и др. М.: Дрофа.
- 8. Химия. 11 кл. Контрольные и проверочные работы к учебнику О. С. Габриеляна «Химия. 11 класс. Базовый уровень» / О. С. Габриелян, П. Н. Березкин, А. А. Ушакова и др. М.: Дрофа.

Программа курса химии для 10—11 классов общеобразовательных учреждений (профильный уровень)

Пояснительная записка

Программа по химии для 10—11 классов общеобразовательных учреждений является логическим продолжением авторского курса для основной школы. Поэтому она разработана с опорой на курс химии 8—9 классов. Результатом этого явилось то, что некоторые, преимущественно теоретические темы курса химии основной школы рассматриваются снова, но уже на более высоком, расширенном и углубленном уровне. Автор делает это осознанно с целью формирования целостной химической картины мира и для обеспечения преемственности между основной и старшей ступенями обучения в общеобразовательных учреждениях.

Курс четко делится на две части соответственно годам обучения: органическую (10 класс) и общую химию (11 класс). Органическая химия рассматривается в 10 классе и строится с учетом знаний, полученных учащимися в основной школе. Поэтому ее изучение начинается с повторения важнейших понятий органической химии, рассмотренных в основной школе.

После повторения важнейших понятий рассматривается строение и классификация органических соединений, теоретическую основу которой составляет современная теория химического строения с некоторыми элементами электронной теории и стереохимии. Логическим продолжением ведущей идеи о взаимосвязи (состав — строение — свойства) веществ является тема «Хими-

ческие реакции в органической химии», которая знакомит учащихся с классификацией реакций в органической химии и дает представление о некоторых механизмах их протекания.

Полученные в первых темах теоретические знания учащихся затем закрепляются и развиваются на богатом фактическом материале химии классов органических соединений, которые рассматриваются в порядке усложнения от более простых (углеводородов) до наиболее сложных (биополимеров). Такое построение курса позволяет усилить дедуктивный подход к изучению органической химии.

Курс общей химии изучается в 11 классе и ставит своей задачей интеграцию знаний учащихся по неорганической и органической химии с целью формирования у них единой химической картины мира. Ведущая идея курса — единство неорганической и органической химии на основе общности их понятий, законов и теорий, а также на основе общих подходов к классификации органических и неорганических веществ и закономерностям протекания химических реакций между ними. Такое построение курса общей химии позволяет подвести учащихся к пониманию материальности и познаваемости единого мира веществ, причин его красочного многообразия, всеобщей связи явлений.

В свою очередь, это дает возможность учащимся не только лучше усвоить химическое содержание, но и понять роль и место химии в системе наук о природе. Такое построение курса позволяет в полной мере использовать в обучении операции мышления: анализ и синтез, сравнение и аналогию, систематизацию и обобщение.

Данная программа реализована в учебниках: Γ абриелян О. С., Mаскаев Ф. Н., Π ономарев С. Ю., Tеренин В. И. Химия. 10 кл. Профильный уровень. — М.: Дрофа; Γ абриелян О. С., Π ысова Γ . Γ . Химия. 11 кл. Профильный уровень. — М.: Дрофа.

10 КЛАСС (ОРГАНИЧЕСКАЯ ХИМИЯ)

(3/4 ч в неделю; всего 102/136 ч, из них 5/10 ч — резервное время)

Введение (5/8 ч)

Предмет органической химии. Особенности строения и свойств органических соединений. Значение и роль органической химии в системе естественных наук и в жизни общества. Краткий очерк истории развития органической химии.

Предпосылки создания теории строения: теория радикалов и теория типов, работы А. Кекуле, Э. Франкланда и А. М. Бутлерова, съезд врачей и естествоиспытателей в г. Шпейере. Основные положения теории строения органических соединений А. М. Бутлерова. Химическое строение и свойства органических веществ. Изомерия на примере *н*-бутана и изобутана.

Электронное облако и орбиталь, их формы: *s* и *p*. Электронные и электронно-графические формулы атома углерода в нормальном и возбужденном состояниях. Ковалентная химическая связь и ее разновидности: о и л. Водородная связь. Сравнение обменного и донорно-акцепторного механизмов образования ковалентной связи.

Первое валентное состояние — sp^3 -гибридизация — на примере молекулы метана и других алканов. Второе валентное состояние — sp^2 -гибридизация — на примере молекулы этилена. Третье валентное состояние — sp-гибридизация — на примере молекулы ацетилена. Геометрия молекул рассмотренных веществ и характеристика видов ковалентной связи в них. Модель Гиллеспи для объяснения взаимного отталкивания гибридных орбиталей и их расположения в пространстве с минимумом энергии.

Демонстрации. Коллекция органических веществ, материалов и изделий из них. Модели молекул CH_4 и CH_3OH ; C_2H_2 , C_2H_4 и C_6H_6 ; \emph{H} -бутана и изобутана. Взаимодействие натрия с этанолом

и отсутствие взаимодействия с диэтиловым эфиром. Коллекция полимеров, природных и синтетических каучуков, лекарственных препаратов, красителей. Шаростержневые и объемные модели молекул H_2 , Cl_2 , N_2 , H_2O , CH_4 . Шаростержневые и объемные модели CH_4 , C_2H_4 , C_2H_2 . Модель, выполненная из воздушных шаров, демонстрирующая отталкивание гибридных орбиталей.

Тема 1 Строение и классификация органических соединений (10/13 ч)

Классификация органических соединений по строению «углеродного скелета»: ациклические (алканы, алкены, алкины, алкадиены), карбоциклические (циклоалканы и арены) и гетероциклические. Классификация органических соединений по функциональным группам: спирты, фенолы, простые эфиры, альдегиды, кетоны, карбоновые кислоты, сложные эфиры.

Номенклатура тривиальная, рациональная и ИЮПАК. Рациональная номенклатура как предшественник номенклатуры ИЮПАК. Принципы образования названий органических соединений по ИЮПАК: замещения, родоначальной структуры, старшинства характеристических групп (алфавитный порядок).

Структурная изомерия и ее виды: изомерия «углеродного скелета», изомерия положения (кратной связи и функциональной группы), межклассовая изомерия. Пространственная изомерия и ее виды: геометрическая и оптическая. Биологическое значение оптической изомерии. Отражение особенностей строения молекул геометрических и оптических изомеров в их названиях.

Демонстрации. Образцы представителей различных классов органических соединений и шаростержневые или объемные модели их молекул. Таблицы «Название алканов и алкильных заместителей» и «Основные классы органических

соединений». Шаростержневые модели молекул органических соединений различных классов. Модели молекул изомеров разных видов изомерии.

Тема 2 Химические реакции в органической химии (6/8 ч)

Понятие о реакциях замещения. Галогенирование алканов и аренов, щелочной гидролиз галогеналканов.

Понятие о реакциях присоединения. Гидрирование, гидрогалогенирование, галогенирование. Реакции полимеризации и поликонденсации.

Понятие о реакциях отщепления (элиминирования). Дегидрирование алканов. Дегидратация спиртов. Дегидрохлорирование на примере галогеналканов. Понятие о крекинге алканов и деполимеризации полимеров.

Реакции изомеризации.

Гомолитический и гетеролитический разрыв ковалентной химической связи; образование ковалентной связи по донорно-акцепторному механизму. Понятие о нуклеофиле и электрофиле. Классификация реакций по типу реагирующих частиц (нуклеофильные и электрофильные) и принципу изменения состава молекулы. Взаимное влияние атомов в молекулах органических веществ. Индуктивный и мезомерный эффекты. Правило Марковникова.

Расчетные задачи. 1. Вычисление выхода продукта реакции от теоретически возможного. 2. Комбинированные задачи.

Демонстрации. Взрыв смеси метана с хлором. Обесцвечивание бромной воды этиленом и ацетиленом. Получение фенолоформальдегидной смолы.

Деполимеризация полиэтилена. Получение этилена и этанола. Крекинг керосина. Взрыв гремучего газа. Горение метана или пропан-бутановой смеси (из газовой зажигалки). Взрыв смеси метана или пропан-бутановой смеси с кислородом (воздухом).

Тема 3 Углеводороды (24/31 ч)

Понятие об углеводородах.

Природные источники углеводородов. Нефть и ее промышленная переработка. Фракционная перегонка, термический и каталитический крекинг. Природный газ, его состав и практическое использование. Каменный уголь. Коксование каменного угля. Происхождение природных источников углеводородов. Риформинг, алкилирование и ароматизация нефтепродуктов. Экологические аспекты добычи, переработки и использования полезных ископаемых.

Алканы. Гомологический ряд и общая формула алканов. Строение молекулы метана и других алканов. Изомерия алканов. Физические свойства алканов. Алканы в природе. Промышленные способы получения: крекинг алканов, фракционная перегонка нефти. Лабораторные способы получения алканов: синтез Вюрца, декарбоксилирование солей карбоновых кислот, гидролиз карбида алюминия. Реакции замещения. Горение алканов в различных условиях. Термическое разложение алканов. Изомеризация алканов. Применение алканов. Механизм реакции радикального замещения, его стадии. Практическое использование знаний о механизме (свободно-радикальном) реакций в правилах техники безопасности в быту и на производстве.

Алкенов. Строение молекулы этилена и других алкенов. Изомерия алкенов: структурная и пространственная. Номенклатура и физические свойства алкенов. Получение этиленовых углеводородов из алканов, галогеналканов и спиртов. Поляризация π -связи в молекулах алкенов на примере пропена. Понятие об индуктивном (+I) эффекте на примере молекулы пропена. Реакции присоединения (галогенирование, гидрогалогенирование, гидратация, гидрирование). Реакции окисления

и полимеризации алкенов. Применение алкенов на основе их свойств. Механизм реакции электрофильного присоединения к алкенам. Окисление алкенов в «мягких» и «жестких» условиях.

Алкины. Гомологический ряд алкинов. Общая формула. Строение молекулы ацетилена и других алкинов. Изомерия алкинов. Номенклатура ацетиленовых углеводородов. Получение алкинов: метановый и карбидный способы. Физические свойства алкинов. Реакции присоединения: галогенирование, гидрогалогенирование, гидратация (реакция Кучерова), гидрирование. Тримеризация ацетилена в бензол. Применение алкинов. Окисление алкинов. Особые свойства терминальных алкинов.

Алкадиенов. Строение молекул. Изомерия и номенклатура алкадиенов. Физические свойства. Взаимное расположение π -связей в молекулах алкадиенов: кумулированное, сопряженное, изолированное. Особенности строения сопряженных алкадиенов, их получение. Аналогия в химических свойствах алкенов и алкадиенов. Полимеризация алкадиенов. Натуральный и синтетический каучуки. Вулканизация каучука. Резина. Работы С. В. Лебедева. Особенности реакций присоединения к алкадиенам с сопряженными π -связями.

Ц и к л о а л к а н ы. Понятие о циклоалканах и их свойствах. Гомологический ряд и общая формула циклоалканов. Напряжение цикла в C_3H_6 , C_4H_8 и C_5H_{10} , конформации C_6H_{12} . Изомерия циклоалканов (по «углеродному скелету», *цис-, транс-*, межклассовая). Химические свойства циклоалканов: горение, разложение, радикальное замещение, изомеризация. Особые свойства циклопропана, циклобутана.

Арены. Бензол как представитель аренов. Строение молекулы бензола. Сопряжение π-связей. Изомерия и номенклатура аренов, их получение. Гомологи бензола. Влияние боковой цепи

на электронную плотность сопряженного π -облака в молекулах гомологов бензола на примере толуола. Химические свойства бензола. Реакции замещения с участием бензола: галогенирование, нитрование и алкилирование. Применение бензола и его гомологов. Радикальное хлорирование бензола. Механизм и условия проведения реакции радикального хлорирования бензола. Каталитическое гидрирование бензола. Механизм реакций электрофильного замещения: галогенирования и нитрования бензола и его гомологов. Сравнение реакционной способности бензола и толуола в реакциях замещения. Ориентирующее действие группы атомов CH_3 — в реакциях замещения с участием толуола. Ориентанты I и II рода в реакциях замещения с участием аренов. Реакции боковых цепей алкилбензолов.

Расчетные задачи. 1. Нахождение молекулярной формулы органического соединения по массе (объему) продуктов сгорания. 2. Нахождение молекулярной формулы вещества по его относительной плотности и массовой доле элементов в соединениях. 3. Комбинированные задачи.

Демонстрации. Коллекция «Природные источники углеводородов». Сравнение процессов горения нефти и природного газа. Образование нефтяной пленки на поверхности воды. Каталитический крекинг парафина. Растворение парафина в бензине и испарение растворителя из смеси. Плавление парафина и его отношение к воде (растворение, сравнение плотностей, смачивание). Разделение смеси бензин — вода с помощью делительной воронки.

Получение метана из ацетата натрия и гидроксида натрия. Модели молекул алканов — шаростержневые и объемные. Горение метана, пропанбутановой смеси, парафина в условиях избытка и недостатка кислорода. Взрыв смеси метана с воздухом. Отношение метана, пропан-бутановой смеси, бензина, парафина к бромной воде и раствору

перманганата калия. Взрыв смеси метана и хлора, инициируемый освещением. Восстановление оксида меди (II) парафином.

Шаростержневые и объемные модели молекул структурных и пространственных изомеров алкенов. Объемные модели молекул алкенов. Получение этена из этанола. Обесцвечивание этеном бромной воды. Обесцвечивание этеном раствора перманганата калия. Горение этена.

Получение ацетилена из карбида кальция. Физические свойства. Взаимодействие ацетилена с бромной водой. Взаимодействие ацетилена с раствором перманганата калия. Горение ацетилена. Взаимодействие ацетилена с раствором соли меди или серебра.

Модели (шаростержневые и объемные) молекул алкадиенов с различным взаимным расположением π-связей. Деполимеризация каучука. Модели (шаростержневые и объемные) молекул алкадиенов с различным взаимным расположением π-связей. Коагуляция млечного сока каучуконосов (молочая, одуванчиков или фикуса).

Шаростержневые модели молекул циклоалканов и алкенов. Отношение циклогексана к раствору перманганата калия и бромной воде.

Шаростержневые и объемные модели молекул бензола и его гомологов. Разделение с помощью делительной воронки смеси бензол — вода. Растворение в бензоле различных органических и неорганических (например, серы) веществ. Экстрагирование красителей и других веществ (например, иода) бензолом из водных растворов. Горение бензола. Отношение бензола к бромной воде и раствору перманганата калия. Получение нитробензола. Обесцвечивание толуолом подкисленного раствора перманганата калия и бромной воды.

Лабораторные опыты. 1. Построение моделей молекул алканов. 2. Сравнение плотности и смешиваемости воды и углеводородов. 3. Построение моделей молекул алкенов. 4. Обнаружение алке-

нов в бензине. 5. Получение ацетилена и его реакции с бромной водой и раствором перманганата калия.

Тема 4 Спирты и фенолы (6/8 ч)

С п и р т ы. Состав и классификация спиртов. Изомерия спиртов (положение гидроксильных групп, межклассовая, «углеродного скелета»). Физические свойства спиртов, их получение. Межмолекулярная водородная связь. Особенности электронного строения молекул спиртов. Химические свойства спиртов, обусловленные наличием в молекулах гидроксильных групп: образование алкоголятов, взаимодействие с галогеноводородами, межмолекулярная и внутримолекулярная дегидратация, этерификация, окисление и дегидрирование спиртов. Особенности свойств многоатомных спиртов. Качественная реакция на многоатомные спирты. Важнейшие представители спиртов. Физиологическое действие метанола и этанола. Алкоголизм. его последствия. Профилактика алкоголизма.

Фенол, его физические свойства и получение. Химические свойства фенола как функция его строения. Кислотные свойства. Взаимное влияние атомов и групп в молекулах органических веществ на примере фенола. Поликонденсация фенола с формальдегидом. Качественная реакция на фенол. Применение фенола. Классификация фенолов. Сравнение кислотных свойств веществ, содержащих гидроксильную группу: воды, одно- и многоатомных спиртов, фенола. Электрофильное замещение в бензольном кольце. Применение производных фенола.

Расчетные задачи. Вычисления по термохимическим уравнениям.

Демонстрации. Физические свойства этанола, пропанола-1 и бутанола-1. Шаростержневые модели молекул изомеров с молекулярными форму-

лами C_3H_8O и $C_4H_{10}O$. Количественное вытеснение водорода из спирта натрием. Сравнение реакций горения этилового и пропилового спиртов. Сравнение скоростей взаимодействия натрия с этанолом, пропанолом-2, глицерином. Получение простого эфира. Получение сложного эфира. Получение этена из этанола. Растворимость фенола в воде при обычной и повышенной температуре. Вытеснение фенола из фенолята натрия угольной кислотой. Реакция фенола с хлоридом железа (III). Реакция фенола с формальдегидом.

Лабораторные опыты. 6. Построение моделей молекул изомерных спиртов. 7. Растворимость спиртов с различным числом атомов углерода в воде. 8. Растворимость многоатомных спиртов в воде. 9. Взаимодействие многоатомных спиртов с гидроксидом меди (II). 10. Взаимодействие водного раствора фенола с бромной водой.

Тема 5 Альдегиды. Кетоны (7/9 ч)

Строение молекул альдегидов и кетонов, их изомерия и номенклатура. Особенности строения карбонильной группы. Физические свойства формальдегида и его гомологов. Отдельные представители альдегидов и кетонов. Химические свойства альдегидов, обусловленные наличием в молекуле карбонильной группы атомов (гидрирование, окисление аммиачными растворами оксида серебра и гидроксида меди (II)). Качественные реакции на альдегиды. Реакция поликонденсации формальдегида с фенолом. Особенности строения и химических свойств кетонов. Нуклеофильное присоединение к карбонильным соединениям. Присоединение циановодорода и гидросульфита натрия. Взаимное влияние атомов в молекулах. Галогенирование альдегидов и кетонов по ионному механизму на свету. Качественная реакция на метилкетоны.

Демонстрации. Шаростержневые модели молекул альдегидов и изомерных им кетонов. Окисление бензальдегида на воздухе. Реакция «серебряного зеркала». Окисление альдегидов гидроксидом меди (II).

Лабораторные опыты. 11. Построение моделей молекул изомерных альдегидов и кетонов. 12. Реакция «серебряного зеркала». 13. Окисление альдегидов гидроксидом меди (II). 14. Окисление бензальдегида кислородом воздуха.

Тема 6 Карбоновые кислоты, сложные эфиры и жиры (10/11 ч)

Карбоновых кислот и карбоксильной группы. Классификация и номенклатура карбоновых кислот. Физические свойства карбоновых кислот и их зависимость от строения молекул. Карбоновые кислоты в природе. Биологическая роль карбоновых кислот. Общие свойства неорганических и органических кислот (взаимодействие с металлами, оксидами металлов, основаниями, солями). Влияние углеводородного радикала на силу карбоновой кислоты. Реакция этерификации, условия ее проведения. Химические свойства непредельных карбоновых кислот, обусловленные наличием π-связи в молекуле. Реакции электрофильного замещения с участием бензойной кислоты.

Сложных эфиров. Изомерия сложных эфиров. Изомерия сложных эфиров («углеродного скелета» и межклассовая). Номенклатура сложных эфиров. Обратимость реакции этерификации, гидролиз сложных эфиров. Равновесие реакции этерификации — гидролиза; факторы, влияющие на него. Решение расчетных задач на определение выхода продукта реакции (в %) от теоретически возможного, установление формулы и строения вещества по продуктам его сгорания (или гидролиза).

Жиры — сложные эфиры глицерина и карбоновых кислот. Состав и строение жиров. Номенклатура и классификация жиров. Масла. Жиры в природе. Биологические функции жиров. Свойства жиров. Омыление жиров, получение мыла. Объяснение моющих свойств мыла. Гидрирование жидких жиров. Маргарин. Понятие о СМС. Объяснение моющих свойств мыла и СМС (в сравнении).

Демонстрации. Знакомство с физическими свойствами некоторых карбоновых кислот: муравьиной, уксусной, пропионовой, масляной, щавелевой, лимонной, олеиновой, стеариновой, бензойной. Возгонка бензойной кислоты. Отношение различных карбоновых кислот к воде. Сравнение кислотности среды водных растворов муравьиной и уксусной кислот одинаковой молярности. Получение приятно пахнущего сложного эфира. Отношение к бромной воде и раствору перманганата калия предельной и непредельной карбоновых кислот. Шаростержневые модели молекул сложных эфиров и изомерных им карбоновых кислот. Отношение сливочного, подсолнечного и машинного масла к водным растворам брома и перманганата калия.

Лабораторные опыты. 15. Построение моделей молекул изомерных карбоновых кислот и сложных эфиров. 16. Сравнение силы уксусной и соляной кислот в реакциях с цинком. 17. Сравнение растворимости в воде карбоновых кислот и их солей. 18. Взаимодействие карбоновых кислот с металлами, основными оксидами, основаниями, амфотерными гидроксидами и солями. 19. Растворимость жиров в воде и органических растворителях.

Экспериментальные задачи. 1. Распознавание растворов ацетата натрия, карбоната натрия, силиката натрия и стеарата натрия. 2. Распознавание образцов сливочного масла и маргарина. 3. Получение карбоновой кислоты из мыла.

4. Получение уксусной кислоты из ацетата натрия.

Тема 7 **Углеводы** (7/9 ч)

Моно-, ди- и полисахариды. Представители каждой группы.

Биологическая роль углеводов. Их значение в жизни человека и общества.

Моносахариды. Глюкоза, ее физические свойства. Строение молекулы. Равновесия в растворе глюкозы. Зависимость химических свойств глюкозы от строения молекулы. Взаимодействие с гидроксидом меди (II) при комнатной температуре и нагревании, этерификация, реакция «серебряного зеркала», гидрирование. Реакции брожения глюкозы: спиртового, молочнокислого. Глюкоза в природе. Биологическая роль глюкозы. Применение глюкозы на основе ее свойств. Фруктоза как изомер глюкозы. Сравнение строения молекул и химических свойств глюкозы и фруктозы. Фруктоза в природе и ее биологическая роль.

Дисахаридов. Восстанавливающие и невосстанавливающие дисахариды. Сахароза, лактоза, мальтоза, их строение и биологическая роль. Гидролиз дисахаридов. Промышленное получение сахарозы из природного сырья.

Полисахариды. Крахмал и целлюлоза (сравнительная характеристика: строение, свойства, биологическая роль). Физические свойства полисахаридов. Химические свойства полисахаридов. Гидролиз полисахаридов. Качественная реакция на крахмал. Полисахариды в природе, их биологическая роль. Применение полисахаридов. Понятие об искусственных волокнах. Взаимодействие целлюлозы с неорганическими и карбоновыми кислотами — образование сложных эфиров.

Демонстрации. Образцы углеводов и изделий из них. Взаимодействие сахарозы с гидроксидом меди (II). Получение сахарата кальция и выделение сахарозы из раствора сахарата кальция. Реакция «серебряного зеркала» для глюкозы. Взаи-

модействие глюкозы с фуксинсернистой кислотой. Отношение растворов сахарозы и мальтозы (лактозы) к гидроксиду меди (II) при нагревании. Ознакомление с физическими свойствами целлюлозы и крахмала. Набухание целлюлозы и крахмала в воде. Получение нитрата целлюлозы.

Лабораторные опыты. 20. Ознакомление с физическими свойствами глюкозы. 21. Взаимодействие глюкозы с гидроксидом меди (II) при обычных условиях и при нагревании. 22. Взаимодействие глюкозы и сахарозы с аммиачным раствором оксида серебра. 23. Кислотный гидролиз сахарозы. 24. Качественная реакция на крахмал. 25. Знакомство с коллекцией волокон.

Экспериментальные задачи. 1. Распознавание растворов глюкозы и глицерина. 2. Определение наличия крахмала в меде, хлебе, маргарине.

Тема 8 **Азотсодержащие органические соединения** (9/11 ч)

Амины. Состав и строение аминов. Классификация, изомерия и номенклатура аминов. Алифатические амины. Анилин. Получение аминов: алкилирование аммиака, восстановление нитросоединений (реакция Зинина). Физические свойства аминов. Химические свойства аминов: взаимодействие с водой и кислотами. Гомологический ряд ароматических аминов. Алкилирование и ацилирование аминов. Взаимное влияние атомов в молекулах на примере аммиака, алифатических и ароматических аминов. Применение аминов.

Аминокислоты и белки. Состав и строение молекул аминокислот. Изомерия аминокислот. Двойственность кислотно-основных свойств аминокислот и ее причины. Взаимодействие аминокислот с основаниями. Взаимодействие аминокислот с кислотами, образование сложных эфиров. Образование внутримолекулярных солей (бипо-

лярного иона). Реакция поликонденсации аминокислот. Синтетические волокна (капрон, энант и др.). Биологическая роль аминокислот. Применение аминокислот.

Белки как природные биополимеры. Пептидная группа атомов и пептидная связь. Пептиды. Белки. Первичная, вторичная и третичная структуры белков. Химические свойства белков: горение, денатурация, гидролиз, качественные (цветные) реакции. Биологические функции белков. Значение белков. Четвертичная структура белков как агрегация белковых и небелковых молекул. Глобальная проблема белкового голодания и пути ее решения.

Нуклеиновые кислоты. Общий план строения нуклеотидов. Понятие о пиримидиновых и пуриновых основаниях. Первичная, вторичная и третичная структуры молекулы ДНК. Биологическая роль ДНК и РНК. Генная инженерия и биотехнология. Трансгенные формы животных и растений.

Демонстрации. Физические свойства метиламина. Горение метиламина. Взаимодействие анилина и метиламина с водой и кислотами. Отношение бензола и анилина к бромной воде. Окрашивание тканей анилиновыми красителями. Обнаружение функциональных групп в молекулах аминокислот. Нейтрализация щелочи аминокислотой. Нейтрализация кислоты аминокислотой. Растворение и осаждение белков. Денатурация белков. Качественные реакции на белки. Модели молекулы ДНК и различных видов молекул РНК. Образцы продуктов питания из трансгенных форм растений и животных; лекарств и препаратов, изготовленных с помощью генной инженерии.

Лабораторные опыты. 26. Построение моделей молекул изомерных аминов. 27. Смешиваемость анилина с водой. 28. Образование солей аминов с кислотами. 29. Качественные реакции на белки.

Тема 9 Биологически активные вещества (6/8 ч)

Витамины. Понятие о витаминах. Их классификация и обозначение. Нормы потребления витаминов. Водорастворимые (на примере витамина С) и жирорастворимые (на примере витаминов А и D) витамины. Понятие об авитаминозах, гипер- и гиповитаминозах. Профилактика авитаминозов. Отдельные представители водорастворимых витаминов (С, РР, группы В) и жирорастворимых витаминов (А, D, E). Их биологическая роль.

Ферменты. Понятие о ферментах как о биологических катализаторах белковой природы. Значение в биологии и применение в промышленности. Классификация ферментов. Особенности строения и свойств ферментов: селективность и эффективность. Зависимость активности фермента от температуры и рН среды. Особенности строения и свойств в сравнении с неорганическими катализаторами.

Гормоны. Понятие о гормонах как биологически активных веществах, выполняющих эндокринную регуляцию жизнедеятельности организмов. Классификация гормонов: стероиды, производные аминокислот, полипептидные и белковые гормоны. Отдельные представители гормонов: эстрадиол, тестостерон, инсулин, адреналин.

Лекарства. Понятие о лекарствах как химиотерапевтических препаратах. Группы лекарств: сульфамиды (стрептоцид), антибиотики (пенициллин), аспирин. Безопасные способы применения, лекарственные формы. Краткие исторические сведения о возникновении и развитии химиотерапии. Механизм действия некоторых лекарственных препаратов, строение молекул, прогнозирование свойств на основе анализа химического строения. Антибиотики, их клас-

сификация по строению, типу и спектру действия. Дисбактериоз. Наркотики, наркомания и ее профилактика.

Демонстрации. Образцы витаминных препаратов. Поливитамины. Иллюстрации фотографий животных с различными формами авитаминозов. Сравнение скорости разложения H_2O_2 под действием фермента (каталазы) и неорганических катализаторов (КІ, FeCl $_3$, MnO $_2$). Плакат или кодограмма с изображением структурных формул эстрадиола, тестостерона, адреналина. Взаимодействие адреналина с раствором FeCl $_3$. Белковая природа инсулина (цветные реакции на белки). Плакаты или кодограммы с формулами амида сульфаниловой кислоты, дигидрофолиевой и ложной дигидрофолиевой кислот, бензилпенициллина, тетрациклина, цефотаксима, аспирина.

Лабораторные опыты. 30. Обнаружение витамина А в растительном масле. 31. Обнаружение витамина С в яблочном соке. 32. Обнаружение витамина D в желтке куриного яйца. 33. Ферментативный гидролиз крахмала под действием амилазы. 34. Разложение пероксида водорода под действием каталазы. 35. Действие дегидрогеназы на метиленовый синий. 36. Испытание растворимости адреналина в воде и соляной кислоте. 37. Обнаружение аспирина в готовой лекарственной форме (реакцией гидролиза или цветной реакцией с сульфатом бериллия).

Практикум (7/10 ч)

1. Качественный анализ органических соединений. 2. Углеводороды. 3. Спирты и фенолы. 4. Альдегиды и кетоны. 5. Карбоновые кислоты. 6. Углеводы. 7. Амины, аминокислоты, белки. 8. Идентификация органических соединений. 9. Действие ферментов на различные вещества. 10. Анализ некоторых лекарственных препаратов (аспирина, парацетамола).

11 КЛАСС (ОБЩАЯ ХИМИЯ)

(3/4 ч в неделю; всего 102/136 ч, из них 5/7 ч — резервное время)

Тема 1 Строение атома (9/13 ч)

Атом — сложная частица. Ядро и электронная оболочка. Электроны, протоны и нейтроны. Микромир и макромир. Дуализм частиц микромира.

Состояние электронов в атоме. Электронное облако и орбиталь. Квантовые числа. Форма орбиталей (s, p, d, f). Энергетические уровни и подуровни. Строение электронных оболочек атомов. Электронные конфигурации атомов элементов. Принцип Паули и правило Гунда. Электронно-графические формулы атомов элементов. Электронная классификация элементов: s-, p-, d- и f-семейства.

Валентные возможности атомов хими ческих элементые возможности атомов химических элементов, обусловленные числом неспаренных электронов в нормальном и возбужденном состояниях. Другие факторы, определяющие валентные возможности атомов: наличие неподеленных электронных пар и наличие свободных орбиталей. Сравнение понятий «валентность» и «степень окисления».

Периодический закон и периодическая система химических элементов Д. И. Менделеева и строение атома. Предпосылки открытия периодического закона: накопление фактологического материала, работы предшественников (Й. Я. Берцелиуса, И. В. Деберейнера, А. Э. Шанкуртуа, Дж. А. Ньюлендса, Л. Ю. Мейера); съезд химиков в Карлсруэ. Личностные качества Д. И. Менделеева.

Открытие Д. И. Менделеевым периодического закона. Первая формулировка периодического

закона. Горизонтальная, вертикальная и диагональная периодические зависимости.

Периодический закон и строение атома. Изотопы. Современная трактовка понятия «химический элемент». Закономерность Ван-ден-Брука — Мозли. Вторая формулировка периодического закона. Периодическая система Д. И. Менделеева и строение атома. Физический смысл порядкового номера элементов, номеров группы и периода. Причины изменения металлических и неметаллических свойств элементов в группах и периодах, в том числе больших и сверхбольших. Третья формулировка периодического закона. Значение периодического закона и периодической системы химических элементов Д. И. Менделеева для развития науки и понимания химической картины мира.

 $T \ e \ m \ a \ 2$ Строение вещества. Дисперсные системы $(15/19 \ u)$

X имическая связь. Единая природа химической связи. Ионная химическая связь и ионные кристаллические решетки. Ковалентная химическая связь и ее классификация: по механизму образования (обменный и донорно-акцепторный), по электроотрицательности (полярная и неполярная), по способу перекрывания электронных орбиталей (σ и π), по кратности (одинарная, двойная, тройная и полуторная). Полярность связи и полярность молекулы. Кристаллические решетки веществ с ковалентной связью: атомная и молекулярная. Металлическая химическая связь и металлические кристаллические решетки. Водородная связь: межмолекулярная и внутримолекулярная. Механизм образования этой связи, ее значение.

Межмолекулярные взаимодействия.

Единая природа химических связей: ионная связь как предельный случай ковалентной полярной связи; переход одного вида связи в другой; разные виды связи в одном веществе и т. д.

Свойства ковалентной химической связи. Насыщаемость, поляризуемость, направленность. Геометрия молекул.

 Γ и б р и д и з а ц и я о р б и т а л е й и г е о м е тр и я м о л е к у л. sp^3 - Γ ибридизация у алканов, воды, аммиака, алмаза; sp^2 -гибридизация у соединений бора, алкенов, аренов, диенов и графита; sp-гибридизация у соединений бериллия, алкинов и карбина. Геометрия молекул названных веществ.

Полимеры органические и неорганические. Полимеры. Основные понятия химии высокомолекулярных соединений: «мономер», «полимер», «макромолекула», «структурное звено», «степень полимеризации», «молекулярная масса». Способы получения полимеров: реакции полимеризации и поликонденсации. Строение полимеров: геометрическая форма макромолекул, кристалличность и аморфность, стереорегулярность. Полимеры органические и неорганические. Каучуки. Пластмассы. Волокна. Биополимеры: белки и нуклеиновые кислоты. Неорганические полимеры атомного строения (аллотропные модификации углерода, кристаллический кремний, селен и теллур цепочечного строения, диоксид кремния и др.) кулярного строения (сера пластическая и др.).

Теория строения химических соединений А. М. Бутлерова. Предпосылки создания теории строения химических соединений: работы предшественников (Ж. Б. Дюма, Ф. Велер, Ш. Ф. Жерар, Ф. А. Кекуле), съезд естествоиспытателей в Шпейере. Личностные качества А. М. Бутлерова.

Основные положения теории химического строения органических соединений и современной теории строения. Изомерия в органической и неорганической химии. Взаимное влияние атомов в молекулах органических и неорганических веществ.

Основные направления развития теории строения органических соединений (зависимость свойств веществ не только от химического, но

и от их электронного и пространственного строения). Индукционный и мезомерный эффекты. Стереорегулярность.

Диалектические основы общности двух ведущих теорийхимии. Диалектические основы общности периодического закона Д. И. Менделеева и теории строения А. М. Бутлерова в становлении (работы предшественников, накопление фактов, участие в съездах, русский менталитет), предсказании (новые элементы — Ga, Se, Ge и новые вещества — изомеры) и развитии (три формулировки).

Дисперсных системах. Дисперсионная среда и дисперсная фаза. Типы дисперсных систем и их значение в природе и жизни человека. Дисперсные системы с жидкой средой: взвеси, коллоидные системы, их классификация. Золи и гели. Эффект Тиндаля. Коагуляция. Синерезис. Молекулярные и истинные растворы. Способы выражения концентрации растворов.

Расчетные задачи. 1. Расчеты по химическим

Расчетные задачи. 1. Расчеты по химическим формулам. 2. Расчеты, связанные с понятиями «массовая доля» и «объемная доля» компонентов смеси. 3. Вычисление молярной концентрации растворов.

Демонстрации. Модели кристаллических решеток веществ с различным типом связей. Модели молекул различной геометрии. Модели кристаллических решеток алмаза и графита. Модели молекул изомеров структурной и пространственной изомерии. Свойства толуола. Коллекция пластмасс и волокон. Образцы неорганических полимеров: серы пластической, фосфора красного, кварца и др. Модели молекул белков и ДНК. Образцы различных систем с жидкой средой. Коагуляция. Синерезис. Эффект Тиндаля.

Лабораторные опыты. 1. Свойства гидроксидов

Лабораторные опыты. 1. Свойства гидроксидов элементов 3-го периода. 2. Ознакомление с образцами органических и неорганических полимеров.

Тема 3 **Химические реакции** (21/29 ч)

Классификация химических реакций в органической и неорганической химии. Понятие о химической реакции; ее отличие от ядерной реакции. Реакции, идушие без изменения качественного состава веществ: аллотропизация, изомеризация и полимеризация. Реакции, идущие с изменением состава веществ: по числу и составу реагирующих и образующихся веществ (разложения, соединения, замещения, обмена); по изменению степеней окисления элементов (окислительно-восстановительные реакции и неокислительно-восстановительные реакции); по тепловому эффекту (экзо- и эндотермические); по фазе (гомо- и гетерогенные); по направлению (обратимые и необратимые); по использованию катализатора (каталитические и некаталитические); по механизму (радикальные и ионные); по виду энергии, инициирующей реакцию (фотохимические, радиационные, электрохимические, термохимические). Особенности классификации реакций в органической химии.

Вероятность протекания химических реакций. Закон сохранения энергии. Внутренняя энергия и экзо- и эндотермические реакции. Тепловой эффект химических реакций. Термохимические уравнения. Теплота образования. Понятие об энтальпии. Закон Г. И. Гесса и следствия из него. Энтропия. Энергия Гиббса. Возможность протекания реакций в зависимости от изменения энергии и энтропии.

Скорость химических реакций. Понятие о скорости реакции. Скорость гомо- и гетерогенной реакции. Энергия активации. Элементарные и сложные реакции. Факторы, влияющие на скорость химической реакции: природа реагирующих веществ; температура (закон Вант-Гоффа); концентрация (основной закон химической кинетики); катализаторы. Катализ: гомо- и гетерогенный; механизм действия катализаторов. Ферменты. Их сравнение с неорганическими катализаторами. Ферментативный катализ, его механизм. Ингибиторы и каталитические яды. Зависимость скорости реакций от поверхности соприкосновения реагирующих веществ.

Обратимость химических реакций. Химическое равновесие. Понятие о химическом равновесии. Равновесные концентрации. Динамичность химического равновесия. Константа равновесия. Факторы, влияющие на смещение равновесия: концентрация, давление и температура. Принцип Ле Шателье.

Электролиты и неэлектролиты. Электролитическая диссоциация. Механизм диссоциации веществ с различным типом химической связи. Свойства ионов. Катионы и анионы. Кислоты, соли, основания в свете электролитической диссоциации. Степень электролитической диссоциации. Степень электролитической диссоциации, ее зависимость от природы электролита и его концентрации. Константа диссоциации. Ступенчатая диссоциация электролитов. Реакции, протекающие в растворах электролитов. Произведение растворимости.

Водородный показатель. Диссоциация воды. Константа диссоциации воды. Ионное произведение воды. Водородный показатель рН. Среды водных растворов электролитов. Значение водородного показателя для химических и биологических процессов.

Гидролиз. Понятие «гидролиз». Гидролиз органических соединений (галогеналканов, сложных эфиров, углеводов, белков, АТФ) и его значение. Гидролиз неорганических веществ. Гидролиз солей — три случая. Ступенчатый гидролиз. Необратимый гидролиз. Практическое применение гидролиза.

Расчетные задачи. 1. Расчеты по термохимическим уравнениям. 2. Вычисление теплового эф-

фекта реакции по теплотам образования реагирующих веществ и продуктов реакции. 3. Определение рН раствора заданной молярной концентрации. 4. Расчет средней скорости реакции по концентрациям реагирующих веществ. 5. Вычисления с использованием понятия «температурный коэффициент скорости реакции». 6. Нахождение константы равновесия реакции по равновесным концентрациям и определение исходных концентраций веществ.

Демонстрации. Превращение красного фосфора в белый, кислорода — в озон. Модели n-бутана и изобутана. Получение кислорода из пероксида водорода и воды; дегидратация этанола. Цепочка превращений $P \to P_2O_5 \to H_3PO_4$; свойства соляной и уксусной кислот; реакции, идущие с образованием осадка, газа и воды; свойства металлов; окисление альдегида в кислоту и спирта в альдегид. Реакции горения; реакции эндотермические на примере реакции разложения (этанола, калийной селитры, известняка или мела) и экзотермические на примере реакций соединения (обеспвечивание бромной воды и раствора перманганата калия этиленом, гашение извести и др.). Взаимодействие цинка с растворами соляной и серной кислот при разных температурах, при разных концентрациях соляной кислоты; разложение пероксида водорода с помощью оксида марганца (IV), каталазы сырого мяса и сырого картофеля. Взаимодействие цинка с различной поверхностью (порошка, пыли, гранул) с кислотой. Модель «кипящего слоя». Смещение равновесия в системе ${
m Fe^{3+}} + 3{
m CNS^-}
ightleftharpoonup {
m Fe} {
m (CNS)_3};$ омыление жиров, реакции этерификации. Зависимость степени электролитической диссоциации уксусной кислоты от разбавления. Сравнение свойств 0,1 Н растворов серной и сернистой кислот; муравьиной и уксусной кислот; гидроксидов лития, натрия и калия. Индикаторы и изменение их окраски в различных средах. Сернокислый и ферментативный гидролиз

углеводов. Гидролиз карбонатов, сульфатов, силикатов щелочных металлов; нитратов цинка или свинца (II). Гидролиз карбида кальция.

Лабораторные опыты. 3. Получение кислорода разложением пероксида водорода и (или) перманганата калия. 4. Реакции, идущие с образованием осадка, газа и воды для органических и неорганических кислот. 5. Использование индикаторной бумаги для определения рН слюны, желудочного сока и других соков организма человека. 6. Разные случаи гидролиза солей.

Тема 4 Вещества и их свойства (33/40 ч)

Классификация неорганических вещества. Простые и сложные вещества. Оксиды, их классификация. Гидроксиды (основания, кислородсодержащие кислоты, амфотерные гидроксиды). Кислоты, их классификация. Основания, их классификация. Соли средние, кислые, основные и комплексные.

Классификация органических веществ. Углеводороды и классификация веществ в зависимости от строения углеродной цепи (алифатические и циклические) и от кратности связей (предельные и непредельные). Гомологический ряд. Производные углеводородов: галогеналканы, спирты, фенолы, альдегиды и кетоны, карбоновые кислоты, простые и сложные эфиры, нитросоединения, амины, аминокислоты.

Металлы. Положение металлов в периодической системе Д.И.Менделеева и строение их атомов. Простые вещества — металлы: строение кристаллов и металлическая химическая связь. Аллотропия. Общие физические свойства металлов. Ряд стандартных электродных потенциалов. Общие химические свойства металлов (восстановительные свойства): взаимодействие с неметаллами (кислородом, галогенами, серой, азотом, водородом), с водой, кислотами и солями в растворах, ор-

ганическими соединениями (спиртами, галогеналканами, фенолом, кислотами), со щелочами. Значение металлов в природе и в жизни организмов.

Коррозия металлов. Понятие «коррозия металлов». Химическая коррозия. Электрохимическая коррозия. Способы защиты металлов от коррозии.

Общие способы получения металлов. Металлы в природе. Металлургия и ее виды: пиро-, гидро- и электрометаллургия. Электролиз расплавов и растворов соединений металлов и его практическое значение.

Переходные металлы. Железо. Медь, серебро; цинк, ртуть; хром, марганец (нахождение в природе; получение и применение простых веществ; свойства простых веществ; важнейшие соединения).

Неметаллы. Положение неметаллов в периодической системе Д.И.Менделеева, строение их атомов. Электроотрицательность. Инертные газы. Двойственное положение водорода в периодической системе. Неметаллы — простые вещества. Их атомное и молекулярное строение. Аллотропия и ее причины. Химические свойства неметаллов. Окислительные свойства: взаимодействие с металлами, водородом, менее электроотрицательными неметаллами, некоторыми сложными веществами. Восстановительные свойства неметаллов в реакциях со фтором, кислородом, сложными веществами-окислителями (азотной и серной кислотами и др.).

Водородные соединения неметаллов. Получение их синтезом и косвенно. Строение молекул и кристаллов этих соединений. Физические свойства. Отношение к воде. Изменение кислотно-основных свойств в периодах и группах.

Несолеобразующие и солеобразующие оксиды. Кислородные кислоты. Изменение кислотных свойств высших оксидов и гидроксидов неметаллов в периодах и группах. Зависимость свойств кислот от степени окисления неметалла.

Кислоты органические и неорганической теории. Сопряженные кислотно-основные пары. Классификация органических и неорганических кислот. Общие свойства кислот: взаимодействие органических и неорганических кислот с металлами, с основными оксидами, с амфотерными оксидами и гидроксидами, с солями, образование сложных эфиров. Особенности свойств концентрированной серной и азотной кислот. Особенности свойств уксусной и муравьиной кислот.

Основания органические и неорганические и еские. Основания в свете протолитической теории. Классификация органических и неорганических оснований. Химические свойства щелочей и нерастворимых оснований. Свойства бескислородных оснований: аммиака и аминов. Взаимное влияние атомов в молекуле анилина.

Амфотерные органические и неорганической теории. Амфотерные соединения в свете протолитической теории. Амфотерность оксидов и гидроксидов некоторых металлов: взаимодействие с кислотами и щелочами. Понятие о комплексных соединениях. Комплексообразователь, лиганды, координационное число, внутренняя сфера, внешняя сфера. Амфотерность аминокислот: взаимодействие аминокислот со щелочами, кислотами, спиртами, друг с другом (образование полипептидов), образование внутренней соли (биполярного иона).

Генетическая связь между классами органических и неорганической связи и генетических рядах в неорганической и органической химии. Генетические ряды металла (на примере кальция и железа), неметалла (на примере цинка). Генетические ряды и генетическая связь в органической химии (для соединений, содержащих два атома углерода в молекуле). Единство мира веществ.

Расчетные залачи. 1. Вычисление массы или объема продуктов реакции по известной массе или объему исходного вещества, содержащего примеси. 2. Вычисление массы исходного вещества, если известен практический выход и массовая доля его от теоретически возможного. 3. Вычисления по химическим уравнениям реакций, если одно из реагирующих веществ дано в избытке. 4. Определение молекулярной формулы долям массовым 5. Определение молекулярной формулы газообразного вещества по известной относительной плотности и массовым долям элементов. 6. Нахождение молекулярной формулы вещества по массе (объему) продуктов сгорания. 7. Комбинированные задачи.

Демонстрации. Коллекция «Классификация неорганических веществ» и образцы представителей классов. Коллекция «Классификация органических веществ» и образцы представителей классов. Модели кристаллических решеток металлов. Коллекция металлов с разными физическими свойствами. Взаимодействие: а) лития, натрия, магния и железа с кислородом; б) щелочных металлов с водой, спиртами, фенолом; в) цинка с растворами соляной и серной кислот; г) натрия с серой; д) алюминия с иодом; е) железа с раствором медного купороса; ж) алюминия с раствором едкого натра. Оксиды и гидроксиды хрома, их получение и свойства. Переход хромата в бихромат и обратно. Коррозия металлов в зависимости от условий. Защита металлов от коррозии: образцы «нержавеек», защитных покрытий. Коллекция руд. Электролиз растворов солей. Модели кристаллических решеток иода, алмаза, графита. Аллотропия фосфора, серы, кислорода. Взаимодействие: а) водорода с кислородом; б) сурьмы с хлором; в) натрия с иодом; г) хлора с раствором бромида калия; д) хлорной и сероводородной воды; е) обесцвечивание бромной воды этиленом или ацетиленом. Получение и свойства хлороводорода, соляной кислоты и аммиака. Свойства соляной, разбавленной серной и уксусной кислот. Взаимодействие концентрированных серной, азотной кислот и разбавленной азотной кислоты с медью. Реакция «серебряного зеркала» для муравьиной кислоты. Взаимодействие раствора гидроксида натрия с кислотными оксидами (оксидом углерода (IV)), амфотерными гидроксидами (гидроксидом цинка). Взаимодействие аммиака с хлороводородом и водой. Аналогично для метиламина. Взаимодействие аминокислот с кислотами и щелочами. Осуществление переходов: $Ca \rightarrow CaO \rightarrow Ca(OH)_2$; $P \rightarrow P_2O_5 \rightarrow H_3PO_4 \rightarrow Ca_3(PO_4)_2$; $Cu \rightarrow CuO \rightarrow CuSO_4 \rightarrow Cu(OH)_2 \rightarrow CuO \rightarrow Cu$; $C_2H_5OH \rightarrow C_2H_4 \rightarrow C_2H_4Br_2$. Лабораторные опыты. 7. Ознакомление с образ-

Лабораторные опыты. 7. Ознакомление с образцами представителей разных классов неорганических веществ. 8. Ознакомление с образцами представителей разных классов органических веществ. 9. Ознакомление с коллекцией руд. 10. Сравнение свойств кремниевой, фосфорной, серной и хлорной кислот; сернистой и серной кислот; азотистой и азотной кислот. 11. Свойства соляной, серной (разб.) и уксусной кислот. 12. Взаимодействие гидроксида натрия с солями, сульфатом меди (II) и хлоридом аммония. 13. Разложение гидроксида меди (II). Получение гидроксида алюминия и изучение его амфотерных свойств.

 ${
m T}$ е м а $\, 5 \,$ Химический практикум $(10/12 \, \, u)^1$

1. Получение, собирание и распознавание газов и изучение их свойств. 2. Скорость химических реакций, химическое равновесие. 3. Срав-

 $^{^1}$ При 3 ч в неделю по 2 ч отводится на практические работы № 1 и 7, при 4 ч в неделю по 2 ч отводится на практические работы № 1, 5—7.

нение свойств неорганических и органических соединений. 4. Решение экспериментальных задач по теме «Гидролиз». 5. Решение экспериментальных задач по неорганической химии. 6. Решение экспериментальных задач по органической химии. 7. Генетическая связь между классами неорганических и органических веществ. 8. Распознавание пластмасс и волокон.

Тема 6 **Химия и общество** (9/16 ч)

Химия и производство. Химическая промышленность, химическая технология. Сырье для химической промышленности. Вода в химической промышленности. Энергия для химического производства. Научные принципы химического производства. Защита окружающей среды и охрана труда при химическом производстве. Основные стадии химического производства (аммиака и метанола). Сравнение производства этих веществ.

Химия и сельское хозяйство. Химизация сельского хозяйства и ее направления. Растения и почва, почвенный поглощающий комплекс (ППК). Удобрения и их классификация. Химические средства защиты растений. Отрицательные последствия применения пестицидов и борьба с ними. Химизация животноводства.

Химия и экология. Химическое загрязнение окружающей среды. Охрана гидросферы от химического загрязнения. Охрана почвы от химического загрязнения. Охрана атмосферы от химического загрязнения. Охрана флоры и фауны от химического загрязнения. Биотехнология и генная инженерия.

Химия и повседневная жизнь человека. Домашняя аптечка. Моющие и чистящие средства. Средства борьбы с бытовыми насекомыми. Средства личной гигиены и косметики.

Химия и пища. Маркировка упаковок пищевых продуктов и промышленных товаров и умение их читать. Экология жилища. Химия и генетика человека.

Демонстрации. Модели производства серной кислоты и аммиака. Коллекция удобрений и пестицидов. Образцы средств бытовой химии и лекарственных препаратов. Коллекции средств гигиены и косметики, препаратов бытовой химии.

Лабораторные опыты. 14. Ознакомление с коллекцией удобрений и пестицидов. 15. Ознакомление с образцами средств бытовой химии и лекарственных препаратов, изучение инструкций к ним по правильному и безопасному применению.

Учебно-методический комплект

1. Габриелян О. С., Остроумов И. Г. Химия. 10 кл. Профильный уровень: Методическое пособие. — М.: Дрофа.

2. Габриелян О. С., Лысова Г. Г. Химия. 11 кл. Профильный уровень: Методическое посо-

бие. — М.: Дрофа.

3. Габриелян О. С., Остроумов И. Г. Настольная книга учителя. Химия. 10~ кл. — М.: Дрофа.

4. Габриелян О. С., Лысова Г. Г., Введенская А. Г. Книга для учителя. Химия. 11 кл.: В 2 ч.: Методическое пособие. — М.: Дрофа.

5. Габриелян О. С., Остроумов И. Г. Органическая химия в тестах, задачах, упражнени-

ях. 10 кл. — М.: Дрофа.

6. Габриелян О. С., Остроумов И. Г. Общая химия в тестах, задачах, упражнениях. $11 \, \text{кл.} -$

М.: Дрофа.

7. Химия. 10 кл.: Контрольные и проверочные работы к учебнику О. С. Габриеляна «Химия. 10 класс. Профильный уровень» / О. С. Габриелян, П. Н. Березкин, А. А. Ушакова и др. — М.: Дрофа.

8. Химия. 11 кл.: Контрольные и проверочные работы к учебнику О. С. Габриеляна, Г. Г. Лысовой «Химия. 11 класс. Профильный уровень» / О. С. Габриелян, П. Н. Березкин, А. А. Ушакова и др. — М.: Дрофа.

9. Габриелян О. С., Решетов П. В., Остроумов И. Г., Никитюк А. М. Готовимся к единому государственному экзамену. — М.: Дрофа.

10. Габриелян О. С., Остроумов И. Г. Химия. Материалы для подготовки к единому государственному экзамену и вступительным экзаменам в вузы: Учеб. пособие. — М.: Дрофа.

11. Габриелян О. С., Ватлина Л. П. Химический эксперимент в школе. 10 кл. — М.:

Дрофа.

12. 8. Габриелян О. С., Остроумов И. Г. Химический эксперимент в школе. 11 кл. — М.: Дрофа.

Содержание

Предисловие	3
Программа курса химии для 8—9 классов	
общеобразовательных учреждений	5
Пояснительная записка	5
8 класс	6
9 класс	16
Учебно-методический комплект	25
Программа курса химии для 10—11 классов	
общеобразовательных учреждений	
(базовый уровень)	27
Пояснительная записка	27
10 класс (органическая химия)	31
11 класс или 10 класс, второе полугодие	
(общая химия)	38
Учебно-методический комплект	46
Программа курса химии для 10—11 классов	
общеобразовательных учреждений	
(профильный уровень)	47
Пояснительная записка	47
10 класс (органическая химия)	49
11 класс (общая химия)	
Учебно-методический комплект	78

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 603332450510203670830559428146817986133868575969 Владелец Бензар Инна Геннадьевна

Действителен С 28.02.2021 по 28.02.2022